1
|
Khadhraoui E, Schmidt L, Klebingat S, Schwab R, Hernández-Durán S, Gihr G, Paukisch H, Stein KP, Behme D, Müller SJ. Comparison of a new MR rapid wash-out map with MR perfusion in brain tumors. BMC Cancer 2024; 24:1139. [PMID: 39267002 PMCID: PMC11395865 DOI: 10.1186/s12885-024-12909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MR perfusion is a standard marker to distinguish progression and therapy-associated changes after surgery and radiochemotherapy for glioblastoma. TRAMs (Treatment Response Assessment Maps) were introduced, which are intended to facilitate the differentiation of vital tumor cells and radiation necrosis by means of late (20-90 min) contrast clearance and enhancement. The differences of MR perfusion and late-enhancement are not fully understood yet. METHODS We have implemented and established a fully automated creation of rapid wash-out (15-20 min interval) maps in our clinic. We included patients with glioblastoma, CNS lymphoma or brain metastases who underwent our MR protocol with MR perfusion and rapid wash-out between 01/01/2024 and 30/06/2024. Since both wash-out and hyperperfusion are intended to depict the active tumor area, this study involves a quantitative and qualitative comparison of both methods. For this purpose, we volumetrically measured rCBV (relative cerebral blood volume) maps and rapid wash-out maps separately (two raters). Additionally, we rated the agreement between both maps on a Likert scale (0-10). RESULTS Thirty-two patients were included in the study: 15 with glioblastoma, 7 with CNS lymphomas and 10 with brain metastasis. We calculated 36 rapid wash-out maps (9 initial diagnosis, 27 follow-up). Visual agreement of MR perfusion with rapid wash-out by rating were found in 44 ± 40% for initial diagnosis, and 75 ± 31% for follow-up. We found a strong correlation (Pearson coefficient 0.92, p < 0.001) between the measured volumes of MR perfusion and rapid wash-out. The measured volumes of MR perfusion and rapid wash-out did not differ significantly. Small lesions were often not detected by MR perfusion. Nevertheless, the measured volumes showed no significant differences in this small cohort. CONCLUSIONS Rapid wash-out calculation is a simple tool that provides new information and, when used in conjunction with MR perfusion, may increase diagnostic accuracy. The method shows promising results, particularly in the evaluation of small lesions.
Collapse
Affiliation(s)
- Eya Khadhraoui
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Leon Schmidt
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Stefan Klebingat
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Roland Schwab
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Silvia Hernández-Durán
- Department of Neurological Surgery, Göttingen University Hospital, Robert-Koch-Str. 40, D-37075, Göttingen, Germany
| | - Georg Gihr
- Clinic for Neuroradiology, Katharinen-Hospital Stuttgart, Kriegsbergstr. 60, D-70174, Stuttgart, Germany
| | - Harald Paukisch
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Daniel Behme
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
- Stimulate Research Campus Magdeburg, Otto-Hahn-Str. 2, D-39106, Magdeburg, Germany
| | - Sebastian Johannes Müller
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
2
|
Parillo M, Mallio CA, Dekkers IA, Rovira À, van der Molen AJ, Quattrocchi CC. Late/delayed gadolinium enhancement in MRI after intravenous administration of extracellular gadolinium-based contrast agents: is it worth waiting? MAGMA (NEW YORK, N.Y.) 2024; 37:151-168. [PMID: 38386150 DOI: 10.1007/s10334-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
The acquisition of images minutes or even hours after intravenous extracellular gadolinium-based contrast agents (GBCA) administration ("Late/Delayed Gadolinium Enhancement" imaging; in this review, further termed LGE) has gained significant prominence in recent years in magnetic resonance imaging. The major limitation of LGE is the long examination time; thus, it becomes necessary to understand when it is worth waiting time after the intravenous injection of GBCA and which additional information comes from LGE. LGE can potentially be applied to various anatomical sites, such as heart, arterial vessels, lung, brain, abdomen, breast, and the musculoskeletal system, with different pathophysiological mechanisms. One of the most popular clinical applications of LGE regards the assessment of myocardial tissue thanks to its ability to highlight areas of acute myocardial damage and fibrotic tissues. Other frequently applied clinical contexts involve the study of the urinary tract with magnetic resonance urography and identifying pathological abdominal processes characterized by high fibrous stroma, such as biliary tract tumors, autoimmune pancreatitis, or intestinal fibrosis in Crohn's disease. One of the current areas of heightened research interest revolves around the possibility of non-invasively studying the dynamics of neurofluids in the brain (the glymphatic system), the disruption of which could underlie many neurological disorders.
Collapse
Affiliation(s)
- Marco Parillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Operative Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
- Operative Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Autonomous University of Barcelona and Hospital Vall d'Hebron, Passeig Vall d'Hebron, Barcelona, Spain
| | - Aart J van der Molen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
3
|
Müller SJ, Khadhraoui E, Ganslandt O, Henkes H, Gihr GA. MRI Treatment Response Assessment Maps (TRAMs) for differentiating recurrent glioblastoma from radiation necrosis. J Neurooncol 2024; 166:513-521. [PMID: 38261142 DOI: 10.1007/s11060-024-04573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND MRI treatment response assessment maps (TRAMs) were introduced to distinguish recurrent malignant glioma from therapy related changes. TRAMs are calculated with two contrast-enhanced T1-weighted sequences and reflect the "late" wash-out (or contrast clearance) and wash-in of gadolinium. Vital tumor cells are assumed to produce a wash-out because of their high turnover rate and the associated hypervascularization, whereas contrast medium slowly accumulates in scar tissue. To examine the real value of this method, we compared TRAMs with the pathology findings obtained after a second biopsy or surgery when recurrence was suspected. METHODS We retrospectively evaluated TRAMs in adult patients with histologically demonstrated glioblastoma, contrast-enhancing tissue and a pre-operative MRI between January 1, 2017, and December 31, 2022. Only patients with a second biopsy or surgery were evaluated. Volumes of the residual tumor, contrast clearance and contrast accumulation before the second surgery were analyzed. RESULTS Among 339 patients with mGBM who underwent MRI, we identified 29 repeated surgeries/biopsies in 27 patients 59 ± 12 (mean ± standard deviation) years of age. Twenty-eight biopsies were from patients with recurrent glioblastoma histology, and only one was from a patient with radiation necrosis. We volumetrically evaluated the 29 pre-surgery TRAMs. In recurrent glioblastoma, the ratio of wash-out volume to tumor volume was 36 ± 17% (range 1-73%), and the ratio of the wash-out volume to the sum of wash-out and wash-in volumes was 48 ± 21% (range 22-92%). For the one biopsy with radiation necrosis, the ratios were 42% and 54%, respectively. CONCLUSIONS Typical recurrent glioblastoma shows a > 20%ratio of the wash-out volume to the sum of wash-out and wash-in volumes. The one biopsy with radiation necrosis indicated that such necrosis can also produce high wash-out in individual cases. Nevertheless, the additional information provided by TRAMs increases the reliability of diagnosis.
Collapse
Affiliation(s)
| | - Eya Khadhraoui
- Klinik Für Neuroradiologie, Klinikum-Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| | - Oliver Ganslandt
- Abteilung Für Neurochirurgie, Klinikum-Stuttgart, Stuttgart, Germany
| | - Hans Henkes
- Klinik Für Neuroradiologie, Klinikum-Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| | - Georg Alexander Gihr
- Klinik Für Neuroradiologie, Klinikum-Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| |
Collapse
|