1
|
Santacroce L, Charitos IA, Colella M, Palmirotta R, Jirillo E. Blood Microbiota and Its Products: Mechanisms of Interference with Host Cells and Clinical Outcomes. Hematol Rep 2024; 16:440-453. [PMID: 39051416 PMCID: PMC11270377 DOI: 10.3390/hematolrep16030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
In healthy conditions, blood was considered a sterile environment until the development of new analytical approaches that allowed for the detection of circulating bacterial ribosomal DNA. Currently, debate exists on the origin of the blood microbiota. According to advanced research using dark field microscopy, fluorescent in situ hybridization, flow cytometry, and electron microscopy, so-called microbiota have been detected in the blood. Conversely, others have reported no evidence of a common blood microbiota. Then, it was hypothesized that blood microbiota may derive from distant sites, e.g., the gut or external contamination of blood samples. Alteration of the blood microbiota's equilibrium may lead to dysbiosis and, in certain cases, disease. Cardiovascular, respiratory, hepatic, kidney, neoplastic, and immune diseases have been associated with the presence of Gram-positive and Gram-negative bacteria and/or their products in the blood. For instance, lipopolysaccharides (LPSs) and endotoxins may contribute to tissue damage, fueling chronic inflammation. Blood bacteria can interact with immune cells, especially with monocytes that engulf microorganisms and T lymphocytes via spontaneous binding to their membranes. Moreover, LPSs, extracellular vesicles, and outer membrane vesicles interact with red blood cells and immune cells, reaching distant organs. This review aims to describe the composition of blood microbiota in healthy individuals and those with disease conditions. Furthermore, special emphasis is placed on the interaction of blood microbiota with host cells to better understand disease mechanisms.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Marica Colella
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
- Doctoral School, eCampus University, 22060 Novedrate, Italy
| | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
| |
Collapse
|
2
|
Xu P, Tao Z, Yang H, Zhang C. Obesity and early-onset colorectal cancer risk: emerging clinical evidence and biological mechanisms. Front Oncol 2024; 14:1366544. [PMID: 38764574 PMCID: PMC11100318 DOI: 10.3389/fonc.2024.1366544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Early-onset colorectal cancer (EOCRC) is defined as diagnosed at younger than 50 years of age and indicates a health burden globally. Patients with EOCRC have distinct risk factors, clinical characteristics, and molecular pathogenesis compared with older patients with CRC. Further investigations have identified different roles of obesity between EOCRC and late-onset colorectal cancer (LOCRC). Most studies have focused on the clinical characteristics of obesity in EOCRC, therefore, the mechanism involved in the association between obesity and EOCRC remains inconclusive. This review further states that obesity affects the carcinogenesis of EOCRC as well as its development and progression, which may lead to obesity-related metabolic syndrome, intestinal dysbacteriosis, and intestinal inflammation.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Zuo Tao
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Cheng Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Roll W, Masthoff M, Köhler M, Rahbar K, Stegger L, Ventura D, Morgül H, Trebicka J, Schäfers M, Heindel W, Wildgruber M, Schindler P. Radiomics-Based Prediction Model for Outcome of Radioembolization in Metastatic Colorectal Cancer. Cardiovasc Intervent Radiol 2024; 47:462-471. [PMID: 38416178 DOI: 10.1007/s00270-024-03680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE To evaluate the benefit of a contrast-enhanced computed tomography (CT) radiomics-based model for predicting response and survival in patients with colorectal liver metastases treated with transarterial Yttrium-90 radioembolization (TARE). MATERIALS AND METHODS Fifty-one patients who underwent TARE were included in this single-center retrospective study. Response to treatment was assessed using the Response Evaluation Criteria in Solid Tumors (RECIST 1.1) at 3-month follow-up. Patients were stratified as responders (complete/partial response and stable disease, n = 24) or non-responders (progressive disease, n = 27). Radiomic features (RF) were extracted from pre-TARE CT after segmentation of the liver tumor volume. A model was built based on a radiomic signature consisting of reliable RFs that allowed classification of response using multivariate logistic regression. Patients were assigned to high- or low-risk groups for disease progression after TARE according to a cutoff defined in the model. Kaplan-Meier analysis was performed to analyze survival between high- and low-risk groups. RESULTS Two independent RF [Energy, Maximal Correlation Coefficient (MCC)], reflecting tumor heterogeneity, discriminated well between responders and non-responders. In particular, patients with higher magnitude of voxel values in an image (Energy), and texture complexity (MCC), were more likely to fail TARE. For predicting treatment response, the area under the receiver operating characteristic curve of the radiomics-based model was 0.75 (95% CI 0.48-1). The high-risk group had a shorter overall survival than the low-risk group (3.4 vs. 6.4 months, p < 0.001). CONCLUSION Our CT radiomics model may predict the response and survival outcome by quantifying tumor heterogeneity in patients treated with TARE for colorectal liver metastases.
Collapse
Affiliation(s)
- Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Max Masthoff
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Michael Köhler
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - David Ventura
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Haluk Morgül
- Department for General, Visceral and Transplantation Surgery, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Jonel Trebicka
- Department of Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Walter Heindel
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Moritz Wildgruber
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Department of Radiology, University Hospital LMU, Munich, Munich, Germany
| | - Philipp Schindler
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany.
| |
Collapse
|
4
|
Ulanja MB, Asafo‐Agyei KO, Neelam V, Beutler BD, Antwi‐Amoabeng D, Governor SB, Rahman GA, Djankpa FT, Ulanja RN, Nteim GB, Mabrouk T, Amankwah M, Alese OB. Survival trends for left and right sided colon cancer using population-based SEER database: A forty-five-year analysis from 1975 to 2019. Cancer Med 2024; 13:e7145. [PMID: 38651190 PMCID: PMC11036079 DOI: 10.1002/cam4.7145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Survival differences between left-sided colon cancer (LSCC) and right-sided colon cancer (RSCC) has been previously reported with mixed results, with various study periods not accounting for other causes of mortality. PURPOSE We sought to assess the trends in colon cancer cause- specific survival (CSS) and overall survival (OS) based on sidedness. METHOD Fine-Gray competing risk and Cox models were used to analyze Surveillance, Epidemiology, and End Results (SEER) population-based cohort from 1975 to 2019. Various interval periods were identified based on the timeline of clinical adoption of modern chemotherapy (1975-1989, interval period A; 1990-2004, B; and 2005-2019, C). RESULTS Of the 227,637 patients, 50.1% were female and 46.2% were RSCC. RSCC was more common for African Americans (51.5%), older patients (age ≥65; 51.4%), females (50.4%), while LSCC was more common among Whites (53.1%; p < 0.001), younger patients (age 18-49, 64.6%; 50-64, 62.3%; p < 0.001), males (58.1%; p < 0.001). The Median CSS for LSCC and RCC were 19.3 and 16.7 years respectively for interval period A (1975-1989). Median CSS for interval periods B and C were not reached (more than half of the cohort was still living at the end of the follow-up period). Adjusted CSS was superior for LSCC versus RSCC for the most recent interval period C (HR 0.89; 0.86-0.92; p < 0.001). LSCC consistently showed superior OS for all study periods. Stage stratification showed worse CSS for localized and regional LSCC in the earlier study periods, but the risk attenuated over time. However, left sided distant disease had superior CSS per stage for all interval periods. OS was better for LSCC irrespective of stage, with gradual improvement over time. CONCLUSION LSCC was associated with superior survival compared to right sided tumors. With the adoption of modern chemotherapy regimens, prognosis between LSCC and RSCC became more divergent in favor of LSCC. Colon cancer clinical trials should strongly consider tumor sidedness as an enrollment factor.
Collapse
Affiliation(s)
- Mark B. Ulanja
- CHRISTUS Ochsner St. Patrick HospitalLake CharlesLouisianaUSA
| | | | - Vijay Neelam
- CHRISTUS Ochsner St. Patrick HospitalLake CharlesLouisianaUSA
| | - Bryce D. Beutler
- Department of Radiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Samuel B. Governor
- Saint Louis University College for Public Health and Social JusticeSaint LouisMissouriUSA
| | - Ganiyu A. Rahman
- Department of Surgery, School of Medical SciencesUniversity of Cape CoastCape CoastGhana
| | - Francis T. Djankpa
- Department of Physiology, School of Medical SciencesUniversity of Cape CoastCape CoastGhana
| | - Reginald N. Ulanja
- Department of Physiology, School of Medical SciencesUniversity of Cape CoastCape CoastGhana
| | - Grace B. Nteim
- Department of Physiology, School of Medical SciencesUniversity of Cape CoastCape CoastGhana
| | - Tarig Mabrouk
- CHRISTUS Ochsner St. Patrick HospitalLake CharlesLouisianaUSA
| | - Millicent Amankwah
- Department of Hematology Oncology, Feist‐Weiller Cancer CenterLouisiana State University Health ShreveportLouisianaUSA
| | - Olatunji B. Alese
- Department of Hematology and OncologyWinship Cancer Institute, Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Chen Q, Wang Z, Wu BX. Promoting wound recovery through stable intestinal flora: Reducing post-operative complications in colorectal cancer surgery patients. Int Wound J 2024; 21:e14501. [PMID: 38050345 PMCID: PMC10898368 DOI: 10.1111/iwj.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
In recent years, the relationship between intestinal flora and post-operative recovery, particularly in colorectal cancer (CRC) surgery patients, it has been hypothesized that intestinal flora stability influences wound healing, reduces complications and improves overall recovery outcomes after surgical interventions. This study examined the relationship between intestinal flora stability and post-operative recovery in patients undergoing CRC surgery. Between May 2020 and 2023, 80 CRC patients from our hospital's Colorectal Surgery Department were enrolled. A random number table was used to divide them into two categories. Both groups were subjected to distinct gastrointestinal preparation protocols. Indicators of clinical therapeutic effect, intestinal flora balance following surgery, post-operative complications and quality of life were evaluated. The observation group, which adhered to a distinct gastrointestinal regimen, demonstrated a statistically significant improvement in post-operative outcomes, with a clinical effectiveness rate of 97.5% compared to the control group's 75%. In addition, the observation group had a lower incidence of intestinal flora imbalance following surgery than the control group. The observation group had lower incidences of intestinal obstruction, infection, anastomotic leakage, incisional tumour implantation and delayed diarrhoea. Using the KPS score and the BMI, post-treatment assessments of the observation group's quality of life revealed significant enhancements in comparison to the control group. Additionally, wound healing rates were superior in the observation group, with a correlation between stable intestinal flora and decreased wound infection rates. The type of post-operative diet influenced the stabilization of the gut flora, with a high-fibre diet producing superior results in both groups. The stability of intestinal flora influences the post-operative rehabilitation of patients undergoing CRC surgery favourably. Appropriate bowel preparation and dietary considerations can reduce post-operative complications, improve wound healing rates and enhance overall quality of life.
Collapse
Affiliation(s)
- Qiao Chen
- Colorectal and Anal SurgeryThe Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yi Chang, HubeiYichangChina
| | - Zhi Wang
- Department of Gastrointestinal SurgeryThe Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| | - Bai Xiang Wu
- Colorectal and Anal SurgeryThe Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yi Chang, HubeiYichangChina
| |
Collapse
|
6
|
Arjmand B, Alavi-Moghadam S, Faraji Z, Aghajanpoor-Pasha M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezazadeh-Mafi A, Rezaei-Tavirani M, Irompour A. The Potential Role of Intestinal Stem Cells and Microbiota for the Treatment of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:115-128. [PMID: 38811486 DOI: 10.1007/5584_2024_803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Colorectal cancer is a global health concern with high incidence and mortality rates. Conventional treatments like surgery, chemotherapy, and radiation therapy have limitations in improving patient survival rates. Recent research highlights the role of gut microbiota and intestinal stem cells in maintaining intestinal health and their potential therapeutic applications in colorectal cancer treatment. The interaction between gut microbiota and stem cells influences epithelial self-renewal and overall intestinal homeostasis. Novel therapeutic approaches, including immunotherapy, targeted therapy, regenerative medicine using stem cells, and modulation of gut microbiota, are being explored to improve treatment outcomes. Accordingly, this chapter provides an overview of the potential therapeutic applications of gut microbiota and intestinal stem cells in treating colorectal cancer.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Faraji
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh-Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | | | - Arsalan Irompour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhang Q, Chumanevich AA, Nguyen I, Chumanevich AA, Sartawi N, Hogan J, Khazan M, Harris Q, Massey B, Chatzistamou I, Buckhaults PJ, Banister CE, Wirth M, Hebert JR, Murphy EA, Hofseth LJ. The synthetic food dye, Red 40, causes DNA damage, causes colonic inflammation, and impacts the microbiome in mice. Toxicol Rep 2023; 11:221-232. [PMID: 37719200 PMCID: PMC10502305 DOI: 10.1016/j.toxrep.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
The incidence of colorectal cancer (CRC) among young people has been on the rise for the past four decades and its underlying causes are only just starting to be uncovered. Recent studies suggest that consuming ultra-processed foods and pro-inflammatory diets may be contributing factors. The increase in the use of synthetic food colors in such foods over the past 40 years, including the common synthetic food dye Allura Red AC (Red 40), coincides with the rise of early-onset colorectal cancer (EOCRC). As these ultra-processed foods are particularly appealing to children, there is a growing concern about the impact of synthetic food dyes on the development of CRC. Our study aimed to investigate the effects of Red 40 on DNA damage, the microbiome, and colonic inflammation. Despite a lack of prior research, high levels of human exposure to pro-inflammatory foods containing Red 40 highlight the urgency of exploring this issue. Our results show that Red 40 damages DNA both in vitro and in vivo and that consumption of Red 40 in the presence of a high-fat diet for 10 months leads to dysbiosis and low-grade colonic inflammation in mice. This evidence supports the hypothesis that Red 40 is a dangerous compound that dysregulates key players involved in the development of EOCRC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Alexander A. Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ivy Nguyen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Anastasiya A. Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Nora Sartawi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jake Hogan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Minou Khazan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Quinn Harris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Bryson Massey
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Phillip J. Buckhaults
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Carolyn E. Banister
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Wirth
- Department of Biobehavioral Health & Nursing Science, College of Nursing, University of South Carolina, Columbia, SC 29208, USA
| | - James R. Hebert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Lorne J. Hofseth
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Li XJ, Gao MG, Chen XX, Rong YM, Huang LL, Huang JS. Genetically Predicted Causal Effects of Gut Microbiota and Gut Metabolites on Digestive Tract Cancer: A Two-Sample Mendelian Randomization Analysis. World J Oncol 2023; 14:558-569. [PMID: 38022400 PMCID: PMC10681779 DOI: 10.14740/wjon1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background Evidence from numerous observational studies and clinical trials has linked gut microbiota and metabolites to digestive tract cancer. However, the causal effect between these factors remains uncertain. Methods Data for this study were obtained from the MiBioGen, TwinsUK Registry, and FinnGen (version R8). Two-sample Mendelian randomization analysis with inverse variance weighting method was primarily used, and the results were validated by heterogeneity analysis, pleiotropy test, and sensitivity analysis. Results At P < 5 × 10-8, our analysis identified four gut microbiotas as risk factors for digestive tract cancer and six as risk factors for colorectal cancer. Conversely, one gut microbiota exhibited protection against bile duct cancer, and two showed protective effects against stomach cancer. At P < 1 × 10-5, our investigation revealed five, six, three, eight, eight, and eight gut microbiotas as risk factors for esophageal, stomach, bile duct, liver, pancreatic, and colorectal cancers, respectively. In contrast, four, two, eight, two, two, and five gut microbiotas exhibited protective effects against these cancers. Additionally, GABA, a metabolite of gut microbiota, displayed a significant protective effect against colorectal cancer. Conclusion In conclusion, specific gut microbiota and metabolites play roles as risk factors or protective factors for digestive tract cancer, and a causal relationship between them has been established, offering novel insights into gut microbiota-mediated cancer development.
Collapse
Affiliation(s)
- Xu Jia Li
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- These authors contributed equally to this work
| | - Meng Ge Gao
- Department of Clinical Nutrition, Huadu District People’s Hospital, Southern Medical University, Guangzhou 510800, China
- These authors contributed equally to this work
| | - Xu Xian Chen
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yu Ming Rong
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ling Li Huang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jin Sheng Huang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
9
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
10
|
Senchukova MA. Genetic heterogeneity of colorectal cancer and the microbiome. World J Gastrointest Oncol 2023; 15:443-463. [PMID: 37009315 PMCID: PMC10052667 DOI: 10.4251/wjgo.v15.i3.443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
In 2020, the International Agency for Research on Cancer and the World Health Organization's GLOBOCAN database ranked colorectal cancer (CRC) as the third most common cancer in the world. Most cases of CRC (> 95%) are sporadic and develop from colorectal polyps that can progress to intramucosal carcinoma and CRC. Increasing evidence is accumulating that the gut microbiota can play a key role in the initiation and progression of CRC, as well as in the treatment of CRC, acting as an important metabolic and immunological regulator. Factors that may determine the microbiota role in CRC carcinogenesis include inflammation, changes in intestinal stem cell function, impact of bacterial metabolites on gut mucosa, accumulation of genetic mutations and other factors. In this review, I discuss the major mechanisms of the development of sporadic CRC, provide detailed characteristics of the bacteria that are most often associated with CRC, and analyze the role of the microbiome and microbial metabolites in inflammation initiation, activation of proliferative activity in intestinal epithelial and stem cells, and the development of genetic and epigenetic changes in CRC. I consider long-term studies in this direction to be very important, as they open up new opportunities for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
11
|
Ugai T, Akimoto N, Haruki K, Harrison TA, Cao Y, Qu C, Chan AT, Campbell PT, Berndt SI, Buchanan DD, Cross AJ, Diergaarde B, Gallinger SJ, Gunter MJ, Harlid S, Hidaka A, Hoffmeister M, Brenner H, Chang-Claude J, Hsu L, Jenkins MA, Lin Y, Milne RL, Moreno V, Newcomb PA, Nishihara R, Obon-Santacana M, Pai RK, Sakoda LC, Schoen RE, Slattery ML, Sun W, Amitay EL, Alwers E, Thibodeau SN, Toland AE, Van Guelpen B, Zaidi SH, Potter JD, Meyerhardt JA, Giannakis M, Song M, Nowak JA, Peters U, Phipps AI, Ogino S. Prognostic role of detailed colorectal location and tumor molecular features: analyses of 13,101 colorectal cancer patients including 2994 early-onset cases. J Gastroenterol 2023; 58:229-245. [PMID: 36648535 PMCID: PMC10203916 DOI: 10.1007/s00535-023-01955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND The pathogenic effect of colorectal tumor molecular features may be influenced by several factors, including those related to microbiota, inflammation, metabolism, and epigenetics, which may change along colorectal segments. We hypothesized that the prognostic association of colon cancer location might differ by tumor molecular characteristics. METHODS Utilizing a consortium dataset of 13,101 colorectal cancer cases, including 2994 early-onset cases, we conducted survival analyses of detailed tumor location stratified by statuses of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and KRAS and BRAF oncogenic mutation. RESULTS There was a statistically significant trend for better colon cancer-specific survival in relation to tumor location from the cecum to sigmoid colon (Ptrend = 0.002), excluding the rectum. The prognostic association of colon location differed by MSI status (Pinteraction = 0.001). Non-MSI-high tumors exhibited the cecum-to-sigmoid trend for better colon cancer-specific survival [Ptrend < 0.001; multivariable hazard ratio (HR) for the sigmoid colon (vs. cecum), 0.80; 95% confidence interval (CI) 0.70-0.92], whereas MSI-high tumors demonstrated a suggestive cecum-to-sigmoid trend for worse survival (Ptrend = 0.020; the corresponding HR, 2.13; 95% CI 1.15-3.92). The prognostic association of colon tumor location also differed by CIMP status (Pinteraction = 0.003) but not significantly by age, stage, or other features. Furthermore, MSI-high status was a favorable prognostic indicator in all stages. CONCLUSIONS Both detailed colonic location and tumor molecular features need to be accounted for colon cancer prognostication to advance precision medicine. Our study indicates the important role of large-scale studies to robustly examine detailed colonic subsites in molecular oncology research.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., EBRC Room 404, Boston, MA, 02215, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., EBRC Room 404, Boston, MA, 02215, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., EBRC Room 404, Boston, MA, 02215, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, St Louis, MO, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, UK
| | - Brenda Diergaarde
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (Deutschen Konsortium für Translationale Krebsforschung), German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., EBRC Room 404, Boston, MA, 02215, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mireia Obon-Santacana
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | | | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., EBRC Room 404, Boston, MA, 02215, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., EBRC Room 404, Boston, MA, 02215, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
12
|
Sung WJ, Hong J. Targeting lncRNAs of colorectal cancers with natural products. Front Pharmacol 2023; 13:1050032. [PMID: 36699052 PMCID: PMC9868597 DOI: 10.3389/fphar.2022.1050032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNA (ncRNA) is one of the functional classes of RNA that has a regulatory role in various cellular processes, such as modulation of disease onset, progression, and prognosis. ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been actively studied in recent years. The change in ncRNA levels is being actively studied in numerous human diseases, especially auto-immune disorders and cancers; however, targeting and regulating ncRNA with natural products to cure cancer has not been fully established. Recently many groups reported the relationship between ncRNA and natural products showing promising effects to serve as additional therapeutic approaches to cure cancers. This mini-review summarizes the aspects of lncRNAs related to cancer biology focusing on colorectal cancers that natural products can target.
Collapse
Affiliation(s)
- Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea,*Correspondence: Jaewoo Hong,
| |
Collapse
|