1
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03479-9. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
2
|
Raonić J, Ždralević M, Vučković L, Šunjević M, Todorović V, Vukmirović F, Marzano F, Tullo A, Giannattasio S, Radunović M. miR-29a expression negatively correlates with Bcl-2 levels in colorectal cancer and is correlated with better prognosis. Pathol Res Pract 2024; 262:155491. [PMID: 39126835 DOI: 10.1016/j.prp.2024.155491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that act as important regulators of gene expression, involved in various biological pathways. Aberrant miRNAs expression is associated with the onset and progression of colorectal cancer (CRC). The aim of this study was to investigate the correlation between five miRNAs (miR-29a, miR-101, miR-125b, miR-146a, and miR-155), found to be deregulated in tissue samples of CRC patients, and clinicopathological characteristics and histological markers. Analysis of histological markers was performed by immunohistochemical staining of tumour tissues with Ki-67, p53, CD34, and Bcl-2. Our findings revealed a significant negative correlation between miR-29a expression and Bcl-2 levels. Furthermore, high miR-29a expression was associated with a lower incidence of distant metastasis in CRC patients. We observed negative correlations between miR-101 expression and the number of lymph nodes with metastasis, as well as the size of the largest metastasis; miR-125b expression and lymphovascular invasion; and miR-155 expression and mucus presence. Our survival analysis demonstrated that high miR-29a expression correlated with better progression-free survival of CRC patients, underscoring its potential as a prognostic marker. Our study unveiled intricate relationships between specific miRNA expressions and clinicopathological features in CRC, highlighting the potential utility of miR-29a as a valuable prognostic biomarker.
Collapse
Affiliation(s)
- Janja Raonić
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro.
| | - Maša Ždralević
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro
| | - Ljiljana Vučković
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| | - Milena Šunjević
- Clinical Centre of Vojvodina, Novi Sad 21000, Serbia; University of Novi Sad, Faculty of Medicine, Novi Sad 21000, Serbia
| | - Vladimir Todorović
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| | - Filip Vukmirović
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| | - Flaviana Marzano
- Institute for Biomembranes, Bioenergetics and Molecular biotechnologies, CNR, Bari 70126, Italy
| | - Apollonia Tullo
- Institute for Biomembranes, Bioenergetics and Molecular biotechnologies, CNR, Bari 70126, Italy
| | - Sergio Giannattasio
- Institute for Biomembranes, Bioenergetics and Molecular biotechnologies, CNR, Bari 70126, Italy
| | - Miodrag Radunović
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| |
Collapse
|
3
|
Tâlvan CD, Tâlvan ET, Mohor CI, Budișan L, Grecu V, Mihalache M, Zănoagă O, Chira S, Berindan-Neagoe I, Cristea V, Mohor CI. Exploring miRNA Profiles in Colon Cancer: A Focus on miR101-3p, miR106a-5p, and miR326. Cancers (Basel) 2024; 16:2285. [PMID: 38927989 PMCID: PMC11201595 DOI: 10.3390/cancers16122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Early diagnosis and prognosis of cancer progression through biomarker profiling are crucial in managing colon cancer patients. Our research aimed to investigate the expression of miR-101-3p, miR-106a-5p, and miR-326 in tumor and adjacent healthy tissues of colon cancer patients and determine their potential diagnostic utility. This study included 40 patients divided into four groups according to the TNM staging classification. MiRNA expression was analyzed using qRT-PCR. The results showed that miR-101-3p, miR-106a-5p, and miR-326 are overexpressed in adjacent healthy tissues but decrease in advanced cancer stages. MiR-106a-5p and miR-326 are strongly correlated with colon cancer severity. These findings suggest that miRNA profiling could be useful for early diagnosis and prognosis in colon cancer management.
Collapse
Affiliation(s)
- Constantin-Dan Tâlvan
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.-D.T.); (C.I.M.); (M.M.); (C.I.M.)
| | - Elena-Teodora Tâlvan
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.-D.T.); (C.I.M.); (M.M.); (C.I.M.)
| | - Călin Ilie Mohor
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.-D.T.); (C.I.M.); (M.M.); (C.I.M.)
| | - Liviuța Budișan
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (L.B.); (O.Z.); (S.C.); (I.B.-N.); (V.C.)
| | - Valentin Grecu
- Faculty of Engineering, “Lucian Blaga” University of Sibiu, 550025 Sibiu, Romania;
| | - Manuela Mihalache
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.-D.T.); (C.I.M.); (M.M.); (C.I.M.)
| | - Oana Zănoagă
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (L.B.); (O.Z.); (S.C.); (I.B.-N.); (V.C.)
| | - Sergiu Chira
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (L.B.); (O.Z.); (S.C.); (I.B.-N.); (V.C.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (L.B.); (O.Z.); (S.C.); (I.B.-N.); (V.C.)
| | - Victor Cristea
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (L.B.); (O.Z.); (S.C.); (I.B.-N.); (V.C.)
| | - Cosmin Ioan Mohor
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.-D.T.); (C.I.M.); (M.M.); (C.I.M.)
| |
Collapse
|
4
|
Darbinian N, Hampe M, Martirosyan D, Bajwa A, Darbinyan A, Merabova N, Tatevosian G, Goetzl L, Amini S, Selzer ME. Fetal Brain-Derived Exosomal miRNAs from Maternal Blood: Potential Diagnostic Biomarkers for Fetal Alcohol Spectrum Disorders (FASDs). Int J Mol Sci 2024; 25:5826. [PMID: 38892014 PMCID: PMC11172088 DOI: 10.3390/ijms25115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are leading causes of neurodevelopmental disability but cannot be diagnosed early in utero. Because several microRNAs (miRNAs) are implicated in other neurological and neurodevelopmental disorders, the effects of EtOH exposure on the expression of these miRNAs and their target genes and pathways were assessed. In women who drank alcohol (EtOH) during pregnancy and non-drinking controls, matched individually for fetal sex and gestational age, the levels of miRNAs in fetal brain-derived exosomes (FB-Es) isolated from the mothers' serum correlated well with the contents of the corresponding fetal brain tissues obtained after voluntary pregnancy termination. In six EtOH-exposed cases and six matched controls, the levels of fetal brain and maternal serum miRNAs were quantified on the array by qRT-PCR. In FB-Es from 10 EtOH-exposed cases and 10 controls, selected miRNAs were quantified by ddPCR. Protein levels were quantified by ELISA. There were significant EtOH-associated reductions in the expression of several miRNAs, including miR-9 and its downstream neuronal targets BDNF, REST, Synapsin, and Sonic hedgehog. In 20 paired cases, reductions in FB-E miR-9 levels correlated strongly with reductions in fetal eye diameter, a prominent feature of FASDs. Thus, FB-E miR-9 levels might serve as a biomarker to predict FASDs in at-risk fetuses.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Monica Hampe
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Syllaios A, Gazouli M, Vailas M, Mylonas KS, Sakellariou S, Sougioultzis S, Karavokyros I, Liakakos T, Schizas D. The Expression Patterns and Implications of MALAT1, MANCR, PSMA3-AS1 and miR-101 in Esophageal Adenocarcinoma. Int J Mol Sci 2023; 25:98. [PMID: 38203269 PMCID: PMC10778904 DOI: 10.3390/ijms25010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is a malignant tumor with poorly understood molecular mechanisms. This study endeavors to elucidate how the long non-coding RNAs (lncRNAs) MALAT1, MANCR and PSMA3-AS1, as well as the microRNA miR-101, exhibit specific expression patterns in the pathogenesis and prognosis of EAC. A total of 50 EAC tissue samples (tumors and lymph nodes) and a control group comprising 26 healthy individuals were recruited. The samples underwent quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. The relative expression levels of MALAT1, MANCR, PSMA3-AS1, and miR-101 were ascertained and correlated with various clinicopathological parameters including TNM staging, tumor characteristics (size and grade of the tumor) lymphatic invasion, disease-free (DFS) and overall survival (OS) of EAC patients. Quantitative analyses revealed that MALAT1 and MANCR were significantly upregulated in EAC tumors and positive lymph nodes when compared to control tissues (p < 0.05). Such dysregulations correlated positively with advanced lymphatic metastases and a higher N stage. DFS in the subgroup of patients with negative lymph nodes was higher in the setting of low-MANCR-expression patients compared to patients with high MANCR expression (p = 0.02). Conversely, miR-101 displayed a significant downregulation in EAC tumors and positive lymph nodes (p < 0.05), and correlated negatively with advanced tumor stage, lymphatic invasion and the grade of the tumor (p = 0.006). Also, patients with low miR-101 expression showed a tendency towards inferior overall survival. PSMA3-AS1 did not demonstrate statistically significant alterations (p > 0.05). This study reveals MALAT1, MANCR, and miR-101 as putative molecular markers for prognostic evaluation in EAC and suggests their involvement in EAC progression.
Collapse
Affiliation(s)
- Athanasios Syllaios
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Michail Vailas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | | | - Stratigoula Sakellariou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Stavros Sougioultzis
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University Athens, 115 27 Athens, Greece;
| | - Ioannis Karavokyros
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | - Theodoros Liakakos
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| |
Collapse
|
6
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|