1
|
Ebner R, Sheikh GT, Brendel M, Ricke J, Cyran CC. ESR Essentials: staging and restaging with FDG-PET/CT in oncology-practice recommendations by the European Society for Hybrid, Molecular and Translational Imaging. Eur Radiol 2024:10.1007/s00330-024-11094-8. [PMID: 39384589 DOI: 10.1007/s00330-024-11094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Positron emission tomography (PET) stands as the paramount clinical molecular imaging modality, especially in oncology. Unlike conventional anatomical-morphological imaging methods such as computed tomography (CT) and magnetic resonance imaging (MRI), PET provides detailed visualizations of internal activity at the molecular and cellular levels. 18-fluorine-fluorodeoxyglucose ([18F]FDG)-PET combined with contrast-enhanced CT (ceCT) significantly improves the detection of various cancers. Appropriate patient selection is crucial, and physicians should carefully assess the appropriateness of [18F]FDG-PET/CT based on specific clinical criteria and evidence. Due to its high diagnostic accuracy, [18F]FDG-PET/CT is indispensable for evaluating the extent of disease, staging, and restaging known malignancies, and assessing the response to therapy. PET/CT imaging offers significant advantages in patient management, particularly by identifying occult metastases that might otherwise go undetected. This can help prevent unnecessary surgeries, allowing many patients to be redirected to systemic chemotherapy instead. However, it is important to note that the gold standard for surgical planning remains CT and/or MRI, depending on the body region. These imaging modalities, with or without associated angiography, provide superior contrast and spatial resolution, essential for detailed surgical preparation and planning. [18F]FDG-PET/CT has a central role in the precise and early diagnosis of cancer, contributing significantly to personalized treatment plans. However, it has limitations, including non-tumor-specific uptake and the potential to inaccurately capture the metabolic activity of certain tumor types due to low uptake in some well-differentiated tumor cell lines. Therefore, it should be utilized in clinical scenarios where it offers crucial diagnostic insights not readily available with other imaging modalities. KEY POINTS: Use [18F]FDG-PET/CT selectively based on clinical appropriateness criteria and existing evidence to optimize resource utilization and minimize patient exposure. Employ [18F]FDG-PET/CT in treatment planning and monitoring, particularly for assessing chemotherapy or radiotherapy response in FDG-avid lymphoma and solid tumors. When available, [18F]FDG-PET/CT can be integrated with other diagnostic tools, such as MRI, to enhance overall diagnostic accuracy.
Collapse
Affiliation(s)
- Ricarda Ebner
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Gabriel T Sheikh
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Dondi F, Bertagna F. Applications of 18F-Fluorodesoxyglucose PET Imaging in Leukemia. PET Clin 2024; 19:535-542. [PMID: 38909010 DOI: 10.1016/j.cpet.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The main finding that 18F-FDG PET imaging can reveal in patients with leukemias is the presence of bone marrow (BM) infiltration in both acute or chronic forms. This ability can influence and guide the use of BM biopsy but also assess to therapy response. Additionally 18F-FDG PET imaging has been reported as particularly useful for the diagnosis of leukemias in patients with non specific symptoms. In the case of acute leukemias it revealed also a role for the evaluation of extramedullary forms while in the case of chronic forms a role for the assessment of Richter transformation has been reported.
Collapse
Affiliation(s)
- Francesco Dondi
- Nuclear Medicine, Department of Medicine and Surgery, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, 25123, Italy.
| | - Francesco Bertagna
- Nuclear Medicine, Department of Medicine and Surgery, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, 25123, Italy
| |
Collapse
|
3
|
Moghrabi S, Abdlkadir AS, Al-Hajaj N, Gnanasegaran G, Kumar R, Syed G, Bozkurt MF, Shukri S, Obeidat S, Khalaf A, Shahait M, Al-Nabhani K, Al-Ibraheem A. A New Era for PET/CT: Applications in Non-Tumorous Renal Pathologies. J Clin Med 2024; 13:4632. [PMID: 39200774 PMCID: PMC11355182 DOI: 10.3390/jcm13164632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Non-tumorous kidney diseases include a variety of conditions affecting both the structure and function of the kidneys, thereby causing a range of health-related problems. Positron emission tomography/computed tomography (PET/CT) has emerged as a potential diagnostic tool, offering a multifaceted approach to evaluating non-tumorous kidney diseases. Its clinical significance extends beyond its conventional role in cancer imaging, enabling a comprehensive assessment of renal structure and function. This review explores the diverse applications of PET/CT imaging in the evaluation of non-cancerous kidney diseases. It examines PET/CT's role in assessing acute kidney injuries, including acute pyelonephritis and other forms of nephritis, as well as chronic conditions such as immune complex-mediated glomerulonephritis and chronic kidney disease. Additionally, the review delves into PET/CT's utility in evaluating complications in renal transplant recipients, identifying renal histiocytosis and detecting renal amyloidosis. The current review aims to promote further research and technological advancements to popularize PET/CT's clinical utility in diagnosing and treating non-tumorous kidney diseases.
Collapse
Affiliation(s)
- Serin Moghrabi
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
| | - Nabeela Al-Hajaj
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
| | - Gopinath Gnanasegaran
- Department of Nuclear Medicine, Royal Free London NHS Foundation Trust, London NW3 2QG, UK;
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110608, India;
| | - Ghulam Syed
- Department of Nuclear Medicine, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Murat Fani Bozkurt
- Department of Nuclear Medicine, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey;
| | - Saad Shukri
- Al-Razi Outpatient Clinic of Internal Medicine, Baghdad 10044, Iraq;
| | - Shahed Obeidat
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
| | - Aysar Khalaf
- Department of Nuclear Medicine, Warith International Cancer Institute, Karbala 56001, Iraq;
| | - Mohammed Shahait
- Surgery Department, Clemenceau Medical Center, Dubai 6869, United Arab Emirates;
| | | | - Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
- School of Medicine, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Papalia GF, Brigato P, Sisca L, Maltese G, Faiella E, Santucci D, Pantano F, Vincenzi B, Tonini G, Papalia R, Denaro V. Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review. Cancers (Basel) 2024; 16:2700. [PMID: 39123427 PMCID: PMC11311270 DOI: 10.3390/cancers16152700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Metastasis commonly occur in the bone tissue. Artificial intelligence (AI) has become increasingly prevalent in the medical sector as support in decision-making, diagnosis, and treatment processes. The objective of this systematic review was to assess the reliability of AI systems in clinical, radiological, and pathological aspects of bone metastases. METHODS We included studies that evaluated the use of AI applications in patients affected by bone metastases. Two reviewers performed a digital search on 31 December 2023 on PubMed, Scopus, and Cochrane library and extracted authors, AI method, interest area, main modalities used, and main objectives from the included studies. RESULTS We included 59 studies that analyzed the contribution of computational intelligence in diagnosing or forecasting outcomes in patients with bone metastasis. Six studies were specific for spine metastasis. The study involved nuclear medicine (44.1%), clinical research (28.8%), radiology (20.4%), or molecular biology (6.8%). When a primary tumor was reported, prostate cancer was the most common, followed by lung, breast, and kidney. CONCLUSIONS Appropriately trained AI models may be very useful in merging information to achieve an overall improved diagnostic accuracy and treatment for metastasis in the bone. Nevertheless, there are still concerns with the use of AI systems in medical settings. Ethical considerations and legal issues must be addressed to facilitate the safe and regulated adoption of AI technologies. The limitations of the study comprise a stronger emphasis on early detection rather than tumor management and prognosis as well as a high heterogeneity for type of tumor, AI technology and radiological techniques, pathology, or laboratory samples involved.
Collapse
Affiliation(s)
- Giuseppe Francesco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Paolo Brigato
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Luisana Sisca
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Girolamo Maltese
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Eliodoro Faiella
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Domiziana Santucci
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
5
|
Hu Y, Dai W, Wang P, Feng Y, Feng H, Li J. Case report: 18F-FDG PET/CT skeletal superscan-like in an adult patient with acute lymphoblastic leukemia. Front Oncol 2024; 14:1401453. [PMID: 39077465 PMCID: PMC11284062 DOI: 10.3389/fonc.2024.1401453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
We herein describe a rare case of adult acute lymphoblastic leukemia with an 18florine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) skeletal superscan-like appearance. The degree of bone marrow uptake was so intense that it far exceeded the level of physiological cerebral uptake and radiourinary activity. The distribution was remarkably similar to a superscan seen on skeletal scintigraphy. Skeletal superscans of 18F-FDG PET/CT have been reported in hematological diseases, solid tumors with extensive bone metastasis, and metabolic diseases. Thus, we reviewed the PET/CT images of cases reported, indicating that more homogeneous distribution, without primary tumor and specific mandibular and skull activity, may be suggestive of hematological diseases.
Collapse
Affiliation(s)
| | - Wenli Dai
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | | | | | | | | |
Collapse
|
6
|
Huang HY, Nguyen HT, Lin TL, Saenprasarn P, Liu PH, Wang HC. Identification of Skin Lesions by Snapshot Hyperspectral Imaging. Cancers (Basel) 2024; 16:217. [PMID: 38201644 PMCID: PMC10778186 DOI: 10.3390/cancers16010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
This study pioneers the application of artificial intelligence (AI) and hyperspectral imaging (HSI) in the diagnosis of skin cancer lesions, particularly focusing on Mycosis fungoides (MF) and its differentiation from psoriasis (PsO) and atopic dermatitis (AD). By utilizing a comprehensive dataset of 1659 skin images, including cases of MF, PsO, AD, and normal skin, a novel multi-frame AI algorithm was used for computer-aided diagnosis. The automatic segmentation and classification of skin lesions were further explored using advanced techniques, such as U-Net Attention models and XGBoost algorithms, transforming images from the color space to the spectral domain. The potential of AI and HSI in dermatological diagnostics was underscored, offering a noninvasive, efficient, and accurate alternative to traditional methods. The findings are particularly crucial for early-stage invasive lesion detection in MF, showcasing the model's robust performance in segmenting and classifying lesions and its superior predictive accuracy validated through k-fold cross-validation. The model attained its optimal performance with a k-fold cross-validation value of 7, achieving a sensitivity of 90.72%, a specificity of 96.76%, an F1-score of 90.08%, and an ROC-AUC of 0.9351. This study marks a substantial advancement in dermatological diagnostics, thereby contributing significantly to the early and precise identification of skin malignancies and inflammatory conditions.
Collapse
Affiliation(s)
- Hung-Yi Huang
- Department of Dermatology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia Yi City 60002, Taiwan;
| | - Hong-Thai Nguyen
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan
| | - Teng-Li Lin
- Department of Dermatology, Dalin Tzu Chi General Hospital, No. 2, Min-Sheng Rd., Dalin Town, Chia Yi City 62247, Taiwan;
| | - Penchun Saenprasarn
- School of Nursing, Shinawatra University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani 12160, Thailand;
| | - Ping-Hung Liu
- Division of General Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st.Rd., Lingya District, Kaohsiung City 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan
- Director of Technology Development, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung City 80661, Taiwan
| |
Collapse
|
7
|
Das K, Mukherjee T, Shankar P. The Role of Extracellular Vesicles in the Pathogenesis of Hematological Malignancies: Interaction with Tumor Microenvironment; a Potential Biomarker and Targeted Therapy. Biomolecules 2023; 13:897. [PMID: 37371477 DOI: 10.3390/biom13060897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development and progression of hematological malignancies. In recent years, studies have focused on understanding how tumor cells communicate within the TME. In addition to several factors, such as growth factors, cytokines, extracellular matrix (ECM) molecules, etc., a growing body of evidence has indicated that extracellular vesicles (EVs) play a crucial role in the communication of tumor cells within the TME, thereby contributing to the pathogenesis of hematological malignancies. The present review focuses on how EVs derived from tumor cells interact with the cells in the TME, such as immune cells, stromal cells, endothelial cells, and ECM components, and vice versa, in the context of various hematological malignancies. EVs recovered from the body fluids of cancer patients often carry the bioactive molecules of the originating cells and hence can be considered new predictive biomarkers for specific types of cancer, thereby also acting as potential therapeutic targets. Here, we discuss how EVs influence hematological tumor progression via tumor-host crosstalk and their use as biomarkers for hematological malignancies, thereby benefiting the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Prem Shankar
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| |
Collapse
|
8
|
Ji J, Pang W, Song J, Wang X, Tang H, Liu Y, Yi H, Wang Y, Gu Q, Li L. Retrospective Analysis of the Predictive Value of 18F-FDG PET/CT Metabolic Parameters for PD-L1 Expression in Cervical Cancer. Diagnostics (Basel) 2023; 13:diagnostics13061015. [PMID: 36980323 PMCID: PMC10047020 DOI: 10.3390/diagnostics13061015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Immunotherapy targeting PD-1/PD-L1 has been proven to be effective for cervical cancer treatment. To explore non-invasive examinations for assessing the PD-L1 status in cervical cancer, we performed a retrospective study to investigate the predictive value of 18F-FDG PET/CT. METHODS The correlations between PD-L1 expression, clinicopathological characteristics and 18F-FDG PET/CT metabolic parameters were evaluated in 74 cervical cancer patients. The clinicopathological characteristics included age, histologic type, tumor differentiation, FIGO stage and tumor size. The metabolic parameters included maximum standard uptake (SUVmax), mean standard uptake (SUVmean), total lesion glycolysis (TLG) and tumor metabolic volume (MTV). RESULTS In univariate analysis, SUVmax, SUVmean, TLG, tumor size and tumor differentiation were obviously associated with PD-L1 status. SUVmax (rs = 0.42) and SUVmean (rs = 0.40) were moderately positively correlated with the combined positive score (CPS) for PD-L1 in Spearman correlation analysis. The results of multivariable analysis showed that the higher SUVmax (odds ratio = 2.849) and the lower degree of differentiation (Odds Ratio = 0.168), the greater probability of being PD-L1 positive. The ROC curve analysis demonstrated that when the cut-off values of SUVmax, SUVmean and TLG were 10.45, 6.75 and 143.4, respectively, the highest accuracy for predicting PD-L1 expression was 77.0%, 71.6% and 62.2%, respectively. The comprehensive predictive ability of PD-L1 expression, assessed by combining SUVmax with tumor differentiation, showed that the PD-L1-negative rate was 100% in the low probability group, whereas the PD-L1-positive rate was 84.6% in the high probability group. In addition, we also found that the H-score of HIF-1α was moderately positively correlated with PD-L1 CPS (rs = 0.51). CONCLUSIONS The SUVmax and differentiation of the primary lesion were the optimum predictors for PD-L1 expression in cervical cancer. There was a great potential for 18F-FDG PET/CT in predicting PD-L1 status and selecting cervical cancer candidates for PD1/PD-L1 immune checkpoint therapy.
Collapse
Affiliation(s)
- Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
| | - Weiqiang Pang
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jinling Song
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiawan Wang
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Huarong Tang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yunying Liu
- Department of Pathology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Heqing Yi
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
| | - Yun Wang
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qing Gu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Linfa Li
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
| |
Collapse
|