1
|
Gulati R, Fleifil Y, Jennings K, Bondoc A, Tiao G, Geller J, Timchenko L, Timchenko N. Inhibition of Histone Deacetylase Activity Increases Cisplatin Efficacy to Eliminate Metastatic Cells in Pediatric Liver Cancers. Cancers (Basel) 2024; 16:2300. [PMID: 39001363 PMCID: PMC11240720 DOI: 10.3390/cancers16132300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
The pediatric liver cancers, hepatoblastoma and hepatocellular carcinoma, are dangerous cancers which often spread to the lungs. Although treatments with cisplatin significantly improve outcomes, cisplatin may not eliminate metastasis-initiating cells. Our group has recently shown that the metastatic microenvironments of hepatoblastoma contain Cancer Associated Fibroblasts (CAFs) and neuron-like cells, which initiate cancer spread from liver to lungs. In this study, we found that these cells express high levels of HDAC1; therefore, we examined if histone deacetylase inhibition improves cisplatin anti-proliferative effects and reduces the formation of tumor clusters in pediatric liver cancer metastatic microenvironments. METHODS New cell lines were generated from primary hepatoblastoma liver tumors (hbl) and lung metastases (LM) of HBL patients. In addition, cell lines were generated from hepatocellular neoplasm, not otherwise specified (HCN-NOS) tumor samples, and hcc cell lines. Hbl, LM and hcc cells were treated with cisplatin, SAHA or in combination. The effect of these drugs on the number of cells, formation of tumor clusters and HDAC1-Sp5-p21 axis were examined. RESULTS Both HBL and HCC tissue specimens have increased HDAC1-Sp5 pathway activation, recapitulated in cell lines generated from the tumors. HDAC inhibition with vorinostat (SAHA) increases cisplatin efficacy to eliminate CAFs in hbl and in hcc cell lines. Although the neuron-like cells survive the combined treatments, proliferation was inhibited. Notably, combining SAHA with cisplatin overcame cisplatin resistance in an LM cell line from an aggressive case with multiple metastases. Underlying mechanisms of this enhanced inhibition include suppression of the HDAC1-Sp5 pathway and elevation of an inhibitor of proliferation p21. Similar findings were found with gemcitabine treatments suggesting that elimination of proliferative CAFs cells is a key event in the inhibition of mitotic microenvironment. CONCLUSIONS Our studies demonstrate the synergistic benefits of HDAC inhibition and cisplatin to eliminate metastasis-initiating cells in pediatric liver cancers.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yasmeen Fleifil
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine Jennings
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alex Bondoc
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Greg Tiao
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Gulati R, Lutz M, Hanlon M, Cast A, Karns R, Geller J, Bondoc A, Tiao G, Timchenko L, Timchenko NA. Cellular origin and molecular mechanisms of lung metastases in patients with aggressive hepatoblastoma. Hepatol Commun 2024; 8:e0369. [PMID: 38285876 PMCID: PMC10830083 DOI: 10.1097/hc9.0000000000000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND AND AIMS Lung metastases are the most threatening signs for patients with aggressive hepatoblastoma (HBL). Despite intensive studies, the cellular origin and molecular mechanisms of lung metastases in patients with aggressive HBL are not known. The aims of these studies were to identify metastasis-initiating cells in primary liver tumors and to determine if these cells are secreted in the blood, reach the lung, and form lung metastases. APPROACH We have examined mechanisms of activation of key oncogenes in primary liver tumors and lung metastases and the role of these mechanisms in the appearance of metastasis-initiating cells in patients with aggressive HBL by RNA-Seq, immunostaining, chromatin immunoprecipitation, Real-Time Quantitative Reverse Transcription PCR and western blot approaches. Using a protocol that mimics the exit of metastasis-initiating cells from tumors, we generated 16 cell lines from liver tumors and 2 lines from lung metastases of patients with HBL. RESULTS We found that primary HBL liver tumors have a dramatic elevation of neuron-like cells and cancer-associated fibroblasts and that these cells are released into the bloodstream of patients with HBL and found in lung metastases. In the primary liver tumors, the ph-S675-β-catenin pathway activates the expression of markers of cancer-associated fibroblasts; while the ZBTB3-SRCAP pathway activates the expression of markers of neurons via cancer-enhancing genomic regions/aggressive liver cancer domains leading to a dramatic increase of cancer-associated fibroblasts and neuron-like cells. Studies of generated metastasis-initiating cells showed that these cells proliferate rapidly, engage in intense cell-cell interactions, and form tumor clusters. The inhibition of β-catenin in HBL/lung metastases-released cells suppresses the formation of tumor clusters. CONCLUSIONS The inhibition of the β-catenin-cancer-enhancing genomic regions/aggressive liver cancer domains axis could be considered as a therapeutic approach to treat/prevent lung metastases in patients with HBL.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maggie Lutz
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Margaret Hanlon
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley Cast
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alex Bondoc
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gregory Tiao
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nikolai A. Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Le Breton C, Coulouarn C. The Molecular Mechanisms Underlying Onset and Progression of Liver Cancers. Cancers (Basel) 2023; 15:4383. [PMID: 37686658 PMCID: PMC10487056 DOI: 10.3390/cancers15174383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Liver cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are deadly cancers that have risen in frequency globally and have limited curative therapeutic options [...].
Collapse
Affiliation(s)
| | - Cédric Coulouarn
- Inserm, University of Rennes, UMR_S 1242, OSS (Oncogenesis Stress Signaling), Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France;
| |
Collapse
|