1
|
Pedrani M, Salfi G, Merler S, Testi I, Cani M, Turco F, Trevisi E, Tortola L, Treglia G, Di Tanna GL, Vogl U, Gillessen S, Theurillat JP, Pereira Mestre R. Prognostic and Predictive Role of SPOP Mutations in Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol 2024; 7:1199-1215. [PMID: 38704358 DOI: 10.1016/j.euo.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
CONTEXT Mutations in the speckle-type POZ (SPOP) gene are frequently identified in prostate cancer (PC); yet, prognostic implications for affected patients remain unclear. Limited consensus exists regarding tailored treatments for SPOP-mutant (SPOPmut) PC. OBJECTIVE To elucidate the prognostic and predictive significance of SPOP mutations across distinct PC stages and treatments. EVIDENCE ACQUISITION A systematic literature search of PubMed, Embase, and Scopus was conducted up to January 29, 2024. The meta-analysis included studies comparing survival outcomes between SPOPmut and SPOP wild-type (SPOPwt) PC. EVIDENCE SYNTHESIS From 669 records, 26 studies (including five abstracts) were analyzed. A meta-analysis of metastasis-free survival in localized (hazard ratio [HR]: 0.72, 95% confidence interval [CI]: 0.59-0.88; p < 0.01) and overall survival (OS) in metastatic PC (HR: 0.64, 95% CI: 0.53-0.76; p < 0.01) showed a favorable prognosis for patients with SPOPmut PC. In metastatic settings, SPOP mutations correlated with improved progression-free survival (PFS) and OS in patients undergoing androgen deprivation therapy ± androgen receptor signaling inhibitor (HR: 0.51, 95% CI: 0.35-0.76, p < 0.01, and HR: 0.60, 95% CI:0.46-0.79, p < 0.01, respectively). In metastatic castration-resistant PC, only abiraterone provided improved PFS and OS to patients with SPOP mutations compared with patients with SPOPwt, but data were limited. SPOP mutations did not correlate with improved PFS (p = 0.80) or OS (p = 0.27) for docetaxel. CONCLUSIONS Patients with SPOPmut PC seem to exhibit superior oncological outcomes compared with patients with SPOPwt. Tailored risk stratification and treatment approaches should be explored in such patients. PATIENT SUMMARY Speckle-type POZ (SPOP) mutations could be a favorable prognostic factor in patients with prostate cancer (PC) and may also predict better progression-free and overall survival than treatment with hormonal agents. Therefore, less intensified treatments omitting chemotherapy for patients with SPOP-mutant PC should be explored in clinical trials.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland; Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, Verona, Italy; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Massimiliano Cani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Italy
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Elena Trevisi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gian Luca Di Tanna
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Clinical Research Unit, myDoctorAngel Sagl, Bioggio, Switzerland.
| |
Collapse
|
2
|
Sweeney CJ, Petry R, Xu C, Childress M, He J, Fabrizio D, Gjoerup O, Morley S, Catlett T, Assaf ZJ, Yuen K, Wongchenko M, Shah K, Gupta P, Hegde P, Pasquina LW, Mariathasan S, Graf RP, Powles T. Circulating Tumor DNA Assessment for Treatment Monitoring Adds Value to PSA in Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2024; 30:4115-4122. [PMID: 38990098 PMCID: PMC11393539 DOI: 10.1158/1078-0432.ccr-24-1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE Enzalutamide after abiraterone progression is commonly used in metastatic castration-resistant prostate cancer despite a low rate of clinical benefit. Analyzing IMbassador250, a phase III trial assessing enzalutamide with or without atezolizumab after abiraterone, we hypothesized that baseline and early changes in circulating tumor DNA (ctDNA) tumor fraction (TF) may identify patients more likely to exhibit survival benefit from enzalutamide. EXPERIMENTAL DESIGN ctDNA was quantified from plasma samples using a tissue-agnostic assay without buffy coat sequencing. Baseline ctDNA TF, changes in ctDNA TF from baseline to cycle 3 day 1 (C3D1), and detection at C3D1 alone were compared with overall response rate, radiographic progression-free survival (rPFS), median OS (mOS), and 50% reduction in PSA. RESULTS ctDNA TF detection at baseline and/or C3D1 was associated with shorter rPFS and OS in 494 evaluable patients. Detection of ctDNA TF at C3D1, with or without detection at cycle 1 day 1, was associated with worse rPFS and mOS than lack of detection. When ctDNA TF and PSA response at C3D1 were discordant, patients with (ctDNA TF undetected/PSA not reduced) had more favorable outcomes than (ctDNA TF detected/PSA reduced; mOS 22.1 vs. 16 months; P < 0.001). CONCLUSIONS In a large cohort of patients with metastatic castration-resistant prostate cancer receiving enzalutamide after abiraterone, we demonstrate the utility of a new tissue-agnostic assay for monitoring molecular response based on ctDNA TF detection and dynamics. ctDNA TF provides a minimally invasive, complementary biomarker to PSA testing and may refine personalized treatment approaches.
Collapse
Affiliation(s)
- Christopher J. Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide SA, Australia.
| | - Russell Petry
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Chang Xu
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | - Jie He
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | - Ole Gjoerup
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | | | - Zoe J. Assaf
- Genentech, Inc., South San Francisco, California.
| | - Kobe Yuen
- Genentech, Inc., South San Francisco, California.
| | | | - Kalpit Shah
- Genentech, Inc., South San Francisco, California.
| | | | - Priti Hegde
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | | | - Ryon P. Graf
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Thomas Powles
- Saint Bartholomew’s Hospital, London, United Kingdom.
| |
Collapse
|
3
|
Obinata D, Takayama K, Inoue S, Takahashi S. Exploring androgen receptor signaling pathway in prostate cancer: A path to new discoveries. Int J Urol 2024; 31:590-597. [PMID: 38345202 DOI: 10.1111/iju.15424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
Androgen deprivation therapy has achieved significant success in treating prostate cancer through strategies centered on the androgen receptor. However, the emergence of castration-resistant prostate cancer highlights this therapy limitation, underscoring the need to elucidate the mechanisms of treatment resistance. This review aimed to focus on multifaceted resistance mechanisms, including androgen receptor overexpression, splice variants, missense mutations, the involvement of the glucocorticoid receptor, and alterations in coregulators and transcription factors, revealing their roles in castration-resistant prostate cancer progression. These mechanisms promote cell survival and proliferation, depending on the androgen receptor signaling pathway, leading to resistance to conventional therapies. Amplification and mutations in the androgen receptor gene facilitate selective adaptation in treatment-resistant cells, consequently diminishing therapeutic efficacy. Furthermore, the activation of glucocorticoid receptors and aberrant regulation of specific coregulators and transcription factors contribute to the activation of androgen receptor-independent signaling pathways, promoting cell survival and proliferation. These findings hold promise for identifying new targets for treating castration-resistant prostate cancer and developing personalized treatment strategies. The development of future therapies will hinge on precisely targeting the androgen receptor signaling pathway, necessitating a deeper understanding of the molecular targets unique to castration-resistant prostate cancer.
Collapse
MESH Headings
- Humans
- Male
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Signal Transduction
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/therapy
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Androgen Antagonists/therapeutic use
- Gene Expression Regulation, Neoplastic
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Prostatic Neoplasms/therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Perri F, Fusco R, Sabbatino F, Fasano M, Ottaiano A, Cascella M, Marciano ML, Pontone M, Salzano G, Maiello ME, Montano M, Calogero E, D'Aniello R, Maiolino P, Ciardiello F, Zotta A, Alfieri S, Ionna F. Translational Insights in the Landscape of Salivary Gland Cancers: Ready for a New Era? Cancers (Basel) 2024; 16:970. [PMID: 38473330 DOI: 10.3390/cancers16050970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Salivary gland carcinomas (SGCs) are rare neoplasms, representing less than 10% of all head and neck tumors, but they are extremely heterogeneous from the histological point of view, their clinical behavior, and their genetics. The guidelines regarding their treatment include surgery in most cases, which can also play an important role in oligometastatic disease. Where surgery cannot be used, systemic therapy comes into play. Systemic therapy for many years has been represented by polychemotherapy, but recently, with the affirmation of translational research, it can also count on targeted therapy, at least in some subtypes of SGCs. Interestingly, in some SGC histotypes, predominant mutations have been identified, which in some cases behave as "driver mutations", namely mutations capable of governing the carcinogenesis process. Targeting these driver mutations may be an effective therapeutic strategy. Nonetheless, it is not always possible to have drugs suitable for targeting driver mutations-and targeting driver mutations is not always accompanied by a clinical benefit. In this review, we will analyze the main mutations predominant in the various histotypes of SGCs.
Collapse
Affiliation(s)
- Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Roberta Fusco
- Medical Oncology Devision, IGEA S.p.A., 80013 Naples, Italy
| | - Francesco Sabbatino
- Medical Oncology Department, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| | - Morena Fasano
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Maria Luisa Marciano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Monica Pontone
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Giovanni Salzano
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Elena Maiello
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Massimo Montano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Ester Calogero
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Roberta D'Aniello
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Piera Maiolino
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Alessia Zotta
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Salvatore Alfieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Franco Ionna
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| |
Collapse
|
5
|
Hasterok S, Scott TG, Roller DG, Spencer A, Dutta AB, Sathyan KM, Frigo DE, Guertin MJ, Gioeli D. The Androgen Receptor Does Not Directly Regulate the Transcription of DNA Damage Response Genes. Mol Cancer Res 2023; 21:1329-1341. [PMID: 37698543 PMCID: PMC11022999 DOI: 10.1158/1541-7786.mcr-23-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The clinical success of combined androgen deprivation therapy (ADT) and radiotherapy (RT) in prostate cancer created interest in understanding the mechanistic links between androgen receptor (AR) signaling and the DNA damage response (DDR). Convergent data have led to a model where AR both regulates, and is regulated by, the DDR. Integral to this model is that the AR regulates the transcription of DDR genes both at a steady state and in response to ionizing radiation (IR). In this study, we sought to determine which immediate transcriptional changes are induced by IR in an AR-dependent manner. Using PRO-seq to quantify changes in nascent RNA transcription in response to IR, the AR antagonist enzalutamide, or the combination of the two, we find that enzalutamide treatment significantly decreased expression of canonical AR target genes but had no effect on DDR gene sets in prostate cancer cells. Surprisingly, we also found that the AR is not a primary regulator of DDR genes either in response to IR or at a steady state in asynchronously growing prostate cancer cells. IMPLICATIONS Our data indicate that the clinical benefit of combining ADT with RT is not due to direct AR regulation of DDR gene transcription, and that the field needs to consider alternative mechanisms for this clinical benefit.
Collapse
Affiliation(s)
- Sylwia Hasterok
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Thomas G. Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Devin G. Roller
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Adam Spencer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Arun B. Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Kizhakke M Sathyan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut 06030, USA
| | - Daniel E. Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Michael J. Guertin
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut 06030, USA
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Cancer Center Member, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 2023; 40:200. [PMID: 37294501 PMCID: PMC10251337 DOI: 10.1007/s12032-023-02060-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.
Collapse
Affiliation(s)
- Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
7
|
Advances in Molecular Regulation of Prostate Cancer Cells by Top Natural Products of Malaysia. Curr Issues Mol Biol 2023; 45:1536-1567. [PMID: 36826044 PMCID: PMC9954984 DOI: 10.3390/cimb45020099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Prostate cancer (PCa) remains both a global health burden and a scientific challenge. We present a review of the molecular targets driving current drug discovery to fight this disease. Moreover, the preventable nature of most PCa cases represents an opportunity for phytochemicals as chemopreventive when adequately integrated into nutritional interventions. With a renovated interest in natural remedies as a commodity and their essential role in cancer drug discovery, Malaysia is looking towards capitalizing on its mega biodiversity, which includes the oldest rainforest in the world and an estimated 1200 medicinal plants. We here explore whether the list of top Malay plants prioritized by the Malaysian government may fulfill the potential of becoming newer, sustainable sources of prostate cancer chemotherapy. These include Andrographis paniculate, Centella asiatica, Clinacanthus nutans, Eurycoma longifolia, Ficus deltoidea, Hibiscus sabdariffa, Marantodes pumilum (syn. Labisia pumila), Morinda citrifolia, Orthosiphon aristatus, and Phyllanthus niruri. Our review highlights the importance of resistance factors such as Smac/DIABLO in cancer progression, the role of the CXCL12/CXCR4 axis in cancer metastasis, and the regulation of PCa cells by some promising terpenes (andrographolide, Asiatic acid, rosmarinic acid), flavonoids (isovitexin, gossypin, sinensetin), and alkylresorcinols (labisiaquinones) among others.
Collapse
|