1
|
Tremblay CS, Saw J, Yan F, Boyle JA, Amarasinghe O, Abdollahi S, Vo ANQ, Shields BJ, Mayoh C, McCalmont H, Evans K, Steiner A, Parsons K, McCormack MP, Powell DR, Wong NC, Jane SM, Lock RB, Curtis DJ. Targeting LMO2-induced autocrine FLT3 signaling to overcome chemoresistance in early T-cell precursor acute lymphoblastic leukemia. Leukemia 2025; 39:577-589. [PMID: 39849166 PMCID: PMC11879882 DOI: 10.1038/s41375-024-02491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025]
Abstract
Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3. Despite a highly proliferative state, these FLT3-overexpressing cells had long-term self-renewal capacity and almost complete resistance to chemotherapy. Chromatin immunoprecipitation and assay for transposase-accessible chromatin sequencing demonstrated FLT3 and its ligand may be direct targets of the LMO2 stem-cell complex. Media conditioned by Lmo2 transgenic thymocytes revealed an autocrine FLT3-dependent signaling loop that could be targeted by the FLT3 inhibitor gilteritinib. Consequently, gilteritinib impaired in vivo growth of ETP-ALL and improved the sensitivity to chemotherapy. Furthermore, gilteritinib enhanced response to the BCL2 inhibitor venetoclax, which may enable "chemo-free" treatment of ETP-ALL. Together, these data provide a cellular and molecular explanation for enhanced cytokine signaling in LMO2-driven ETP-ALL beyond activating mutations and a rationale for clinical trials of FLT3 inhibitors in ETP-ALL.
Collapse
Affiliation(s)
- Cedric S Tremblay
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada.
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Jesslyn Saw
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute (WEHI) of Medical Research, Parkville, VIC, Australia
| | - Jacqueline A Boyle
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Ovini Amarasinghe
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| | - Shokoufeh Abdollahi
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Anh N Q Vo
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Benjamin J Shields
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Anna Steiner
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
- Community and Researcher Engagement (CaRE) program, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Women in Lymphoma, Lymphoma Australia, Brisbane, QLD, Australia
| | - Kevin Parsons
- Community and Researcher Engagement (CaRE) program, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew P McCormack
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Nicholas C Wong
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Stephen M Jane
- Department of Medicine, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Alfred Hospital, Prahran, VIC, Australia
| |
Collapse
|
2
|
Summers RJ, Teachey DT, Hunger SP. How I treat ETP-ALL in children. Blood 2025; 145:43-52. [PMID: 38364183 DOI: 10.1182/blood.2023023155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a unique subtype of immature T-cell ALL that was initially associated with a dramatically inferior prognosis compared with non-ETP T-cell ALL (Not-ETP) when it was first described in 2009. Analyses of larger patient cohorts treated with more contemporary regimens, however, have shown minimal survival differences between ETP and Not-ETP. In this manuscript, we use representative cases to explore therapeutic advances and address common clinical questions regarding the management of children, adolescents, and young adults with ETP-ALL. We describe our recommended treatment approach for a child or adolescent with newly diagnosed ETP-ALL, with an emphasis on the prognostic significance of induction failure and detectable minimal residual disease and the role of hematopoietic stem cell transplant in first remission. We discuss the interplay between the ETP immunophenotype and genomic markers of immaturity in T-cell ALL. Finally, we review novel therapeutic approaches that should be considered when managing relapsed or refractory ETP-ALL.
Collapse
Affiliation(s)
- Ryan J Summers
- Department of Pediatrics, Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
| | - David T Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|