1
|
Potthoff TE, Walter C, Jeising D, Münter D, Verma A, Suero Molina E, Stummer W, Dugas M, Hartmann W, Dottermusch M, Altendorf L, Schüller U, Scheuermann S, Seitz C, Albert TK, Kerl K. Single-cell transcriptomics link gene expression signatures to clinicopathological features of gonadotroph and lactotroph PitNET. J Transl Med 2024; 22:1027. [PMID: 39548496 PMCID: PMC11566263 DOI: 10.1186/s12967-024-05821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Pituitary neuroendocrine tumors (PitNET) are among the most common intracranial tumors. Despite a frequent benign course, aggressive behavior can occur. Tumor behavior is known to be under the influence of the tumor microenvironment (TME). However, the relationship between TME cells and aggressive tumor behavior has not been adequately explored in PitNET. METHODS We performed differential expression analysis as well as gene expression program identification based on single-cell RNA sequencing to comparatively characterize the transcriptome of seven gonadotroph and three lactotroph PitNET and correlate it with clinical features using bulk RNA-seq data from an independent cohort of 134 PitNET. Tumor immune infiltration was quantified via immunostaining on tissue sections of gonadotroph and lactotroph PitNET. RESULTS In lactotroph PitNET, we detect a highly proliferative gene profile with significantly increased expression levels in aggressively growing tumors within bulk RNA-seq data of an independent cohort of 134 PitNET samples. We also report high intratumoral heterogeneity in gonadotroph PitNET (GoPN) and lactotroph PitNET (LaPN) and identify signatures of epithelial, endocrine, and immunological gene networks in both subtypes. A comparison of their TME composition shows enrichment of SPP1+ macrophages and CD4+ T cells in GoPN, as well as enrichment of CD4/CD8 double-negative T cells (DN) and natural killer cells (NK) in LaPN. Also notable is the presence of proliferative lymphocytes, the occurrence of which positively correlates with more aggressive tumor behavior in the bulk RNA-seq cohort. However, increased CD8+ T and NK cell abundances correlate significantly with reduced aggressiveness indicating potential anti-tumoral effects. CONCLUSIONS Our study expands the knowledge of the differences in cellular composition of gonadotroph and lactotroph PitNET subtypes. It lays the foundation for further studies on the influence of lymphoid cells on the variable aggressive behavior of PitNET. Regarding the treatment of drug-resistant lactotroph PitNET, proliferative lymphocytes, CD8+ T, and NK cells could represent potentially valuable targets for developing new cancer immunotherapies.
Collapse
Affiliation(s)
- T Elise Potthoff
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Daniela Jeising
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Daniel Münter
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Archana Verma
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, 48149, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard Domagk Institute of Pathology, University Hospital Münster, 48149, Münster, Germany
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Lea Altendorf
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Sophia Scheuermann
- DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (iFIT), University of Tübingen, 72076, Tübingen, Germany
- Department of Pediatric Hematology and Oncology, University Hospital Tübingen, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site, Tuebingen, Germany
| | - Christian Seitz
- DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (iFIT), University of Tübingen, 72076, Tübingen, Germany
- Department of Pediatric Hematology and Oncology, University Hospital Tübingen, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site, Tuebingen, Germany
| | - Thomas K Albert
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
2
|
Peng J, Yuan L, Kang P, Jin S, Ma S, Zhou W, Jia G, Zhang C, Jia W. Comprehensive transcriptomic analysis identifies three distinct subtypes of pituitary adenomas: insights into tumor behavior, prognosis, and stem cell characteristics. J Transl Med 2024; 22:892. [PMID: 39363281 PMCID: PMC11448088 DOI: 10.1186/s12967-024-05702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Pituitary adenomas (PAs) are the second most common intracranial tumor. While current diagnostic practices rely primarily on histological testing, they often fail to capture the molecular complexities of pituitary adenomas, underscoring the need for a molecular-based classification to refine therapeutic strategies and prognostic assessments. This study aims to provide a molecularly unbiased classification of pituitary adenomas and explore their unique gene expression patterns and clinical features. METHODS We performed unsupervised hierarchical clustering of the gene expression profiles of 117 PA samples to identify three distinct molecular subtypes. Subsequently, we analyzed the compiled transcriptomic profiles of each individual subtype for pathway enrichment. We also validated the new classification with a validation set containing 158 PAs and 24 pituitary adenoma stem cells (PASCs). RESULTS Consensus clustering of transcriptomic data from 117 pituitary adenoma (PA) samples identified three distinct molecular subtypes, each showing unique gene expression patterns and associated biological processes: Group I is enriched in signaling pathways, such as the cAMP signaling pathway and the calcium signaling pathway. Group II is primarily related to metabolic processes, including nitrogen metabolism and arginine biosynthesis in cancer. Group III predominantly shows enrichment in immune responses and potential malignant transformation of the disease, especially through cancer-related pathways such as the JAK-STAT signaling pathway and the PI3K-Akt signaling pathway. The immune profiling revealed distinct patterns for each subtype: Group I had higher dendritic cells and fewer CD8+ T cells, Group II had more monocytes and macrophages, and Group III had elevated levels of T cells. Additionally, there were differences in clinical characteristics and prognosis among the subtypes, with Group III having a worse prognosis, despite the smaller tumor size compared to other groups. Notably, differences in PASCs correlated with the molecular subtypes, with Group III stem cells being enriched in tumorigenesis pathways, PI3K-Akt signaling pathway and Ras signaling pathway. CONCLUSION Our study introduces a novel molecular classification for pituitary adenomas, independent of traditional histological methods. Each subtype features distinct genetic, molecular, and immunological profiles. We have isolated pituitary adenoma stem-like cells (PASCs), pairing them with tumor tissues for detailed transcriptomic analysis. These PASCs exhibit diverse molecular traits consistent with the new classification.
Collapse
Affiliation(s)
- Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linhao Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shucheng Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shunchang Ma
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guijun Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China.
- Beijing Neurosurgical Institute, Beijing, China.
| |
Collapse
|
3
|
Ji X, Yin H, Gu T, Xu H, Fang D, Wang K, Sun H, Tian S, Wu T, Nie Y, Zhang P, Bi Y. Excessive free fatty acid sensing in pituitary lactotrophs elicits steatotic liver disease by decreasing prolactin levels. Cell Rep 2024; 43:114465. [PMID: 38985678 DOI: 10.1016/j.celrep.2024.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The pituitary is the central endocrine gland with effects on metabolic dysfunction-associated steatotic liver disease (MASLD). However, it is not clear whether the pituitary responds to free fatty acid (FFA) toxicity, thus dysregulating hepatic lipid metabolism. Here, we demonstrate that decreased prolactin (PRL) levels are involved in the association between FFA and MASLD based on a liver biospecimen-based cohort. Moreover, overloaded FFAs decrease serum PRL levels, thus promoting liver steatosis in mice with both dynamic diet intervention and stereotactic pituitary FFA injection. Mechanistic studies show that excessive FFA sensing in pituitary lactotrophs inhibits the synthesis and secretion of PRL in a cell-autonomous manner. Notably, inhibiting excessive lipid uptake using pituitary stereotaxic virus injection or a specific drug delivery system effectively ameliorates hepatic lipid accumulation by improving PRL levels. Targeted inhibition of pituitary FFA sensing may be a potential therapeutic target for liver steatosis.
Collapse
Affiliation(s)
- Xinlu Ji
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hongli Yin
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hao Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Da Fang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Kai Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Haixiang Sun
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Sai Tian
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yuanyuan Nie
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
4
|
Toader C, Dobrin N, Tataru CI, Covache-Busuioc RA, Bratu BG, Glavan LA, Costin HP, Corlatescu AD, Dumitrascu DI, Ciurea AV. From Genes to Therapy: Pituitary Adenomas in the Era of Precision Medicine. Biomedicines 2023; 12:23. [PMID: 38275385 PMCID: PMC10813694 DOI: 10.3390/biomedicines12010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This review presents a comprehensive analysis of pituitary adenomas, a type of brain tumor with diverse behaviors and complexities. We cover various treatment approaches, including surgery, radiotherapy, chemotherapy, and their integration with newer treatments. Key to the discussion is the role of biomarkers in oncology for risk assessment, diagnosis, prognosis, and the monitoring of pituitary adenomas. We highlight advances in genomic, epigenomic, and transcriptomic analyses and their contributions to understanding the pathogenesis and molecular pathology of these tumors. Special attention is given to the molecular mechanisms, including the impact of epigenetic factors like histone modifications, DNA methylation, and transcriptomic changes on different subtypes of pituitary adenomas. The importance of the tumor immune microenvironment in tumor behavior and treatment response is thoroughly analyzed. We highlight potential breakthroughs and innovations for a more effective management and treatment of pituitary adenomas, while shedding light on the ongoing need for research and development in this field to translate scientific knowledge into clinical advancements, aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Nicolaie Dobrin
- Neurosurgical Clinic, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Catalina-Ioana Tataru
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital of Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
5
|
Marrero-Rodríguez D, Vela-Patiño S, Martinez-Mendoza F, Valenzuela-Perez A, Peña-Martínez E, Cano-Zaragoza A, Kerbel J, Andonegui-Elguera S, Glick-Betech SS, Hermoso-Mier KX, Mercado-Medrez S, Moscona-Nissan A, Taniguchi-Ponciano K, Mercado M. Genomics, Transcriptomics, and Epigenetics of Sporadic Pituitary Tumors. Arch Med Res 2023; 54:102915. [PMID: 37981525 DOI: 10.1016/j.arcmed.2023.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Pituitary tumors (PT) are highly heterogeneous neoplasms, comprising functioning and nonfunctioning lesions. Functioning PT include prolactinomas, causing amenorrhea-galactorrhea in women and sexual dysfunction in men; GH-secreting adenomas causing acromegaly-gigantism; ACTH-secreting corticotrophinomas causing Cushing disease (CD); and the rare TSH-secreting thyrotrophinomas that result in central hyperthyroidism. Nonfunctioning PT do not result in a hormonal hypersecretion syndrome and most of them are of gonadotrope differentiation; other non-functioning PT include null cell adenomas and silent ACTH-, GH- and PRL-adenomas. Less than 5% of PT occur in a familial or syndromic context whereby germline mutations of specific genes account for their molecular pathogenesis. In contrast, the more common sporadic PT do not result from a single molecular abnormality but rather emerge from several oncogenic events that culminate in an increased proliferation of pituitary cells, and in the case of functioning tumors, in a non-regulated hormonal hypersecretion. In recent years, important advances in the understanding of the molecular pathogenesis of PT have been made, including the genomic, transcriptomic, epigenetic, and proteomic characterization of these neoplasms. In this review, we summarize the available molecular information pertaining the oncogenesis of PT.
Collapse
Affiliation(s)
- Daniel Marrero-Rodríguez
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sandra Vela-Patiño
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Florencia Martinez-Mendoza
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alejandra Valenzuela-Perez
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eduardo Peña-Martínez
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Amayrani Cano-Zaragoza
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jacobo Kerbel
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sergio Andonegui-Elguera
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Shimon S Glick-Betech
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Karla X Hermoso-Mier
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sophia Mercado-Medrez
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alberto Moscona-Nissan
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Keiko Taniguchi-Ponciano
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Moises Mercado
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|