1
|
Kim S, Piao JJ, Bang S, Moon HW, Cho HJ, Ha US, Hong SH, Lee JY, Kim HH, Kim HN, Jeon KH, Rajasekaran MR, Kim SW, Bae WJ. Non-Invasive Radiofrequency Hyperthermia Attenuates HMGB1/TLR4/NF-κB Inflammatory Axis in a Chronic Prostatitis/Chronic Pelvic Pain Syndrome Rat Model. World J Mens Health 2024; 42:855-864. [PMID: 38449454 PMCID: PMC11439805 DOI: 10.5534/wjmh.230230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 03/08/2024] Open
Abstract
PURPOSE The primary goal of this study is to evaluate the effect of the non-invasive radiofrequency hyperthermia (RFHT) device on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) rat model and investigate the underlying mechanism. MATERIALS AND METHODS In this study, Sprague-Dawley rats were randomly distributed into three groups: (1) normal control group, (2) CP/CPPS group, and (3) RFHT group. CP/CPPS rat models were induced by 17β-estradiol and dihydrotestosterone for 4 weeks and RFHT was administered for 5 weeks after model establishment. During RFHT administration, core body temperatures were continuously monitored with a rectal probe. After administering RFHT, we assessed pain index for all groups and collected prostate tissues for Western blot analysis, immunofluorescence, and immunohistochemistry. We also collected adjacent organs to the prostate including urinary bladder, testes, and rectum for safety assessment via H&E staining along with a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. RESULTS After administering RFHT, pain in rats was significantly alleviated compared to the CP/CPPS group. RFHT reduced high-mobility group box 1 (HMGB1) expression and improved inflammation by downregulating subsequent proinflammatory cytokines through inhibition of the toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB) pathway. In prostate-adjacent organs, no significant histological alteration or inflammatory infiltration was detected. The area of cell death also did not increase significantly after RFHT. CONCLUSIONS In conclusion, RFHT demonstrated anti-inflammatory effects by inhibiting the HMGB1-TLR4-NF-κB pathway in CP/CPPS rat models. This suggests that RFHT could serve as a safe and promising therapeutic strategy for CP/CPPS.
Collapse
Affiliation(s)
- Soomin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Integrative Medicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jun Jie Piao
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Integrative Medicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seokhwan Bang
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyong Woo Moon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - U-Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ehwa Womans University, Seoul, Korea
| | | | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Integrative Medicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Integrative Medicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
2
|
Peng J, Partanen A, Pichardo S, Staruch R, Perry K, McGuffin M, Huang Y, Chan KK, Wong S, Czarnota G, Hynynen K, Chu W. Mild hyperthermia with magnetic resonance- guided high intensity focused ultrasound combined with salvage chemoradiation for recurrent rectal cancer. Int J Hyperthermia 2024; 41:2365385. [PMID: 38897584 DOI: 10.1080/02656736.2024.2365385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Pelvic recurrences from rectal cancer present a challenging clinical scenario. Hyperthermia represents an innovative treatment option in combination with concurrent chemoradiation to enhance therapeutic effect. We provide the initial results of a prospective single center feasibility study (NCT02528175) for patients undergoing rectal cancer retreatment using concurrent chemoradiation and mild hyperthermia with MR-guided high intensity focused ultrasound (MR-HIFU). METHODS All patients were deemed ineligible for salvage surgery and were evaluated in a multidisciplinary fashion with a surgical oncologist, radiation oncologist and medical oncologist. Radiation was delivered to a dose of 30.6 Gy in 1.8 Gy per fraction with concurrent capecitabine. MR-HIFU was delivered on days 1, 8 and 15 of concurrent chemoradiation. Our primary objective was feasibility and toxicity. RESULTS Six patients (total 11 screened) were treated with concurrent chemoradiation and mild hyperthermia with MR-HIFU. Tumor size varied between 3.1-16.6 cm. Patients spent an average of 228 min in the MRI suite and sonication with the external transducer lasted an average of 35 min. There were no complications on the day of the MR-HIFU procedure and all acute toxicities (no grade >/=3 toxicities) resolved after completion of treatment. There were no late grade >/=3 toxicities. CONCLUSION Mild hyperthermia with MR-HIFU, in combination with concurrent chemoradiation for appropriately selected patients, is safe for localized pelvic recurrences from rectal cancer. The potential for MR-HIFU to be applied in the recurrent setting in rectal cancer treatment requires further technical development and prospective evaluation.
Collapse
Affiliation(s)
- Jonathan Peng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | | | - Samuel Pichardo
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Kaitlyn Perry
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Merrylee McGuffin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Yuexi Huang
- Department of Medical Biophysics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kelvin Kw Chan
- Department of Medical Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Shun Wong
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Greg Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
- Department of Medical Biophysics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - William Chu
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
M'Rad Y, Charbonnier C, de Oliveira ME, Guillemin PC, Crowe LA, Kössler T, Poletti PA, Boudabbous S, Ricoeur A, Salomir R, Lorton O. Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:524-533. [PMID: 39050977 PMCID: PMC11268946 DOI: 10.1109/ojemb.2024.3410118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. METHODS A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from in vivo HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). RESULTS As compared to the manual EP, the rotation difference with the TOP was on average -3.1 ± 7.1° and the distance difference was on average -7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.
Collapse
Affiliation(s)
- Yacine M'Rad
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
| | | | | | - Pauline Coralie Guillemin
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
| | | | - Thibaud Kössler
- University Hopsitals of GenevaOncology Department1205GenevaSwitzerland
| | | | - Sana Boudabbous
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Alexis Ricoeur
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Rares Salomir
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Orane Lorton
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| |
Collapse
|