1
|
Matsui Y, Ueda D, Fujita S, Fushimi Y, Tsuboyama T, Kamagata K, Ito R, Yanagawa M, Yamada A, Kawamura M, Nakaura T, Fujima N, Nozaki T, Tatsugami F, Fujioka T, Hirata K, Naganawa S. Applications of artificial intelligence in interventional oncology: An up-to-date review of the literature. Jpn J Radiol 2024:10.1007/s11604-024-01668-3. [PMID: 39356439 DOI: 10.1007/s11604-024-01668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Interventional oncology provides image-guided therapies, including transarterial tumor embolization and percutaneous tumor ablation, for malignant tumors in a minimally invasive manner. As in other medical fields, the application of artificial intelligence (AI) in interventional oncology has garnered significant attention. This narrative review describes the current state of AI applications in interventional oncology based on recent literature. A literature search revealed a rapid increase in the number of studies relevant to this topic recently. Investigators have attempted to use AI for various tasks, including automatic segmentation of organs, tumors, and treatment areas; treatment simulation; improvement of intraprocedural image quality; prediction of treatment outcomes; and detection of post-treatment recurrence. Among these, the AI-based prediction of treatment outcomes has been the most studied. Various deep and conventional machine learning algorithms have been proposed for these tasks. Radiomics has often been incorporated into prediction and detection models. Current literature suggests that AI is potentially useful in various aspects of interventional oncology, from treatment planning to post-treatment follow-up. However, most AI-based methods discussed in this review are still at the research stage, and few have been implemented in clinical practice. To achieve widespread adoption of AI technologies in interventional oncology procedures, further research on their reliability and clinical utility is necessary. Nevertheless, considering the rapid research progress in this field, various AI technologies will be integrated into interventional oncology practices in the near future.
Collapse
Affiliation(s)
- Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Abeno-Ku, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-Ku, Kumamoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita-Ku, Sapporo, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-Ku, Tokyo, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| |
Collapse
|
2
|
Guo F, Hu H, Peng H, Liu J, Tang C, Zhang H. Research progress on machine algorithm prediction of liver cancer prognosis after intervention therapy. Am J Cancer Res 2024; 14:4580-4596. [PMID: 39417194 PMCID: PMC11477842 DOI: 10.62347/beao1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The treatment for liver cancer has transitioned from traditional surgical resection to interventional therapies, which have become increasingly popular among patients due to their minimally invasive nature and significant local efficacy. However, with advancements in treatment technologies, accurately assessing patient response and predicting long-term survival has become a crucial research topic. Over the past decade, machine algorithms have made remarkable progress in the medical field, particularly in hepatology and prognosis studies of hepatocellular carcinoma (HCC). Machine algorithms, including deep learning and machine learning, can identify prognostic patterns and trends by analyzing vast amounts of clinical data. Despite significant advancements, several issues remain unresolved in the prognosis prediction of liver cancer using machine algorithms. Key challenges and main controversies include effectively integrating multi-source clinical data to improve prediction accuracy, addressing data privacy and ethical concerns, and enhancing the transparency and interpretability of machine algorithm decision-making processes. This paper aims to systematically review and analyze the current applications and potential of machine algorithms in predicting the prognosis of patients undergoing interventional therapy for liver cancer, providing theoretical and empirical support for future research and clinical practice.
Collapse
Affiliation(s)
- Feng Guo
- Department of Interventional Diagnosis and Treatment, Yongzhou Central Hospital, Yongzhou Clinical College, University of South ChinaYongzhou 425000, Hunan, China
| | - Hao Hu
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430079, Hubei, China
| | - Hao Peng
- Department of Abdominal Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshi 445000, Hubei, China
| | - Jia Liu
- Department of Oncology, The First People’s Hospital of Changde CityChangde 415003, Hunan, China
| | - Chengbo Tang
- Department of Interventional Diagnosis and Treatment, Yongzhou Central Hospital, Yongzhou Clinical College, University of South ChinaYongzhou 425000, Hunan, China
| | - Hao Zhang
- Department of Interventional Vascular Surgery, First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital)Changsha 410000, Hunan, China
| |
Collapse
|
3
|
Brown TJ, Gimotty PA, Mamtani R, Karasic TB, Yang YX. Classification and Regression Trees to Predict for Survival for Patients With Hepatocellular Carcinoma Treated With Atezolizumab and Bevacizumab. JCO Clin Cancer Inform 2024; 8:e2300220. [PMID: 39088775 PMCID: PMC11296500 DOI: 10.1200/cci.23.00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
PURPOSE Systemic therapy with atezolizumab and bevacizumab can extend life for patients with advanced hepatocellular carcinoma (HCC). However, there is substantial variability in response to therapy and overall survival. Although current prognostic models have been validated in HCC, they primarily consider covariates that may be reflective of the severity of the underlying liver disease of patients with HCC. We developed and internally validated a classification and regression tree (CART) to identify patient characteristics associated with risks of early mortality, at or before 6 months from treatment initiation. METHODS This retrospective cohort study used the nationwide Flatiron Health electronic health record-derived deidentified database and included patients with a diagnosis of HCC after January 1, 2020, who received initial systemic therapy with atezolizumab and bevacizumab. CART was developed from available baseline clinical and demographic information to predict mortality within 6 months from treatment initiation. Model characteristics were compared to the albumin-bilirubin (ALBI) model and was further validated against a contemporary validation cohort of patients after a data update. RESULTS A total of 293 patients were analyzed. The CART identified seven cohorts of patients from baseline demographic and laboratory characteristics. The model had an area under the receiver operating curve (AUROC) of 0.739 (95% CI, 0.683 to 0.794) for predicting 6-month mortality. This model was internally valid and performed more favorably than the ALBI model, which had an AUROC of 0.608 (95% CI, 0.557 to 0.660). The model applied to the contemporary validation cohort (n = 111) had an AUROC of 0.666 (95% CI, 0.506 to 0.826). CONCLUSION Using CART, we identified unique cohorts of patients with HCC treated with atezolizumab and bevacizumab with distinct risks of early mortality. This approach outperformed the ALBI model and used clinical and laboratory characteristics that are readily available to oncologists caring for these patients.
Collapse
Affiliation(s)
- Timothy J Brown
- Department of Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA
| | - Ronac Mamtani
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Thomas B Karasic
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Yu-Xiao Yang
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
- Medicine Services, GI section, Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| |
Collapse
|
4
|
Liu Z, Luo C, Chen X, Feng Y, Feng J, Zhang R, Ouyang F, Li X, Tan Z, Deng L, Chen Y, Cai Z, Zhang X, Liu J, Liu W, Guo B, Hu Q. Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study. Int J Surg 2024; 110:1039-1051. [PMID: 37924497 PMCID: PMC10871628 DOI: 10.1097/js9.0000000000000881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Perineural invasion (PNI) of intrahepatic cholangiocarcinoma (ICC) is a strong independent risk factor for tumour recurrence and long-term patient survival. However, there is a lack of noninvasive tools for accurately predicting the PNI status. The authors develop and validate a combined model incorporating radiomics signature and clinicoradiological features based on machine learning for predicting PNI in ICC, and used the Shapley Additive explanation (SHAP) to visualize the prediction process for clinical application. METHODS This retrospective and prospective study included 243 patients with pathologically diagnosed ICC (training, n =136; external validation, n =81; prospective, n =26, respectively) who underwent preoperative contrast-enhanced computed tomography between January 2012 and May 2023 at three institutions (three tertiary referral centres in Guangdong Province, China). The ElasticNet was applied to select radiomics features and construct signature derived from computed tomography images, and univariate and multivariate analyses by logistic regression were used to identify the significant clinical and radiological variables with PNI. A robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning was developed and the SHAP was used to visualize the prediction process. A Kaplan-Meier survival analysis was performed to compare prognostic differences between PNI-positive and PNI-negative groups and was conducted to explore the prognostic information of the combined model. RESULTS Among 243 patients (mean age, 61.2 years ± 11.0 (SD); 152 men and 91 women), 108 (44.4%) were diagnosed as PNI-positive. The radiomics signature was constructed by seven radiomics features, with areas under the curves of 0.792, 0.748, and 0.729 in the training, external validation, and prospective cohorts, respectively. Three significant clinicoradiological features were selected and combined with radiomics signature to construct a combined model using machine learning. The eXtreme Gradient Boosting exhibited improved accuracy and robustness (areas under the curves of 0.884, 0.831, and 0.831, respectively). Survival analysis showed the construction combined model could be used to stratify relapse-free survival (hazard ratio, 1.933; 95% CI: 1.093-3.418; P =0.021). CONCLUSIONS We developed and validated a robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning to accurately identify the PNI statuses of ICC, and visualize the prediction process through SHAP for clinical application.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Chun Luo
- Department of Radiology, The First People’s Hospital of Foshan
| | - Xinjie Chen
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Yanqiu Feng
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
- School of Biomedical Engineering, Southern Medical University
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology
- Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, 1023 Sha-Tai South Road, Guangzhou, China
| | - Jieying Feng
- Department of Radiology, The Sixth Affiliated Hospital, South China University of Technology, Foshan
| | - Rong Zhang
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Fusheng Ouyang
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Xiaohong Li
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Zhilin Tan
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Lingda Deng
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Yifan Chen
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Zhiping Cai
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Ximing Zhang
- Department of Radiology, The First People’s Hospital of Foshan
| | - Jiehong Liu
- School of Biomedical Engineering, Southern Medical University
| | - Wei Liu
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Baoliang Guo
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Qiugen Hu
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| |
Collapse
|
5
|
Zuo D, Yang L, Jin Y, Qi H, Liu Y, Ren L. Machine learning-based models for the prediction of breast cancer recurrence risk. BMC Med Inform Decis Mak 2023; 23:276. [PMID: 38031071 PMCID: PMC10688055 DOI: 10.1186/s12911-023-02377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Breast cancer is the most common malignancy diagnosed in women worldwide. The prevalence and incidence of breast cancer is increasing every year; therefore, early diagnosis along with suitable relapse detection is an important strategy for prognosis improvement. This study aimed to compare different machine algorithms to select the best model for predicting breast cancer recurrence. The prediction model was developed by using eleven different machine learning (ML) algorithms, including logistic regression (LR), random forest (RF), support vector classification (SVC), extreme gradient boosting (XGBoost), gradient boosting decision tree (GBDT), decision tree, multilayer perceptron (MLP), linear discriminant analysis (LDA), adaptive boosting (AdaBoost), Gaussian naive Bayes (GaussianNB), and light gradient boosting machine (LightGBM), to predict breast cancer recurrence. The area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F1 score were used to evaluate the performance of the prognostic model. Based on performance, the optimal ML was selected, and feature importance was ranked by Shapley Additive Explanation (SHAP) values. Compared to the other 10 algorithms, the results showed that the AdaBoost algorithm had the best prediction performance for successfully predicting breast cancer recurrence and was adopted in the establishment of the prediction model. Moreover, CA125, CEA, Fbg, and tumor diameter were found to be the most important features in our dataset to predict breast cancer recurrence. More importantly, our study is the first to use the SHAP method to improve the interpretability of clinicians to predict the recurrence model of breast cancer based on the AdaBoost algorithm. The AdaBoost algorithm offers a clinical decision support model and successfully identifies the recurrence of breast cancer.
Collapse
Affiliation(s)
- Duo Zuo
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Lexin Yang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yu Jin
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huan Qi
- China Mobile Group Tianjin Company Limited, Tianjin, 300308, China
| | - Yahui Liu
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
6
|
Chen J, Wu L, Liu K, Xu Y, He S, Bo X. EDST: a decision stump based ensemble algorithm for synergistic drug combination prediction. BMC Bioinformatics 2023; 24:325. [PMID: 37644423 PMCID: PMC10466832 DOI: 10.1186/s12859-023-05453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION There are countless possibilities for drug combinations, which makes it expensive and time-consuming to rely solely on clinical trials to determine the effects of each possible drug combination. In order to screen out the most effective drug combinations more quickly, scholars began to apply machine learning to drug combination prediction. However, most of them are of low interpretability. Consequently, even though they can sometimes produce high prediction accuracy, experts in the medical and biological fields can still not fully rely on their judgments because of the lack of knowledge about the decision-making process. RELATED WORK Decision trees and their ensemble algorithms are considered to be suitable methods for pharmaceutical applications due to their excellent performance and good interpretability. We review existing decision trees or decision tree ensemble algorithms in the medical field and point out their shortcomings. METHOD This study proposes a decision stump (DS)-based solution to extract interpretable knowledge from data sets. In this method, a set of DSs is first generated to selectively form a decision tree (DST). Different from the traditional decision tree, our algorithm not only enables a partial exchange of information between base classifiers by introducing a stump exchange method but also uses a modified Gini index to evaluate stump performance so that the generation of each node is evaluated by a global view to maintain high generalization ability. Furthermore, these trees are combined to construct an ensemble of DST (EDST). EXPERIMENT The two-drug combination data sets are collected from two cell lines with three classes (additive, antagonistic and synergistic effects) to test our method. Experimental results show that both our DST and EDST perform better than other methods. Besides, the rules generated by our methods are more compact and more accurate than other rule-based algorithms. Finally, we also analyze the extracted knowledge by the model in the field of bioinformatics. CONCLUSION The novel decision tree ensemble model can effectively predict the effect of drug combination datasets and easily obtain the decision-making process.
Collapse
Affiliation(s)
| | | | | | - Yong Xu
- Fujian University of Technology, Fuzhou, China
| | - Song He
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, China
| |
Collapse
|
7
|
Mansur A, Vrionis A, Charles JP, Hancel K, Panagides JC, Moloudi F, Iqbal S, Daye D. The Role of Artificial Intelligence in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities. Cancers (Basel) 2023; 15:2928. [PMID: 37296890 PMCID: PMC10251861 DOI: 10.3390/cancers15112928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Liver cancer is a leading cause of cancer-related death worldwide, and its early detection and treatment are crucial for improving morbidity and mortality. Biomarkers have the potential to facilitate the early diagnosis and management of liver cancer, but identifying and implementing effective biomarkers remains a major challenge. In recent years, artificial intelligence has emerged as a promising tool in the cancer sphere, and recent literature suggests that it is very promising in facilitating biomarker use in liver cancer. This review provides an overview of the status of AI-based biomarker research in liver cancer, with a focus on the detection and implementation of biomarkers for risk prediction, diagnosis, staging, prognostication, prediction of treatment response, and recurrence of liver cancers.
Collapse
Affiliation(s)
- Arian Mansur
- Harvard Medical School, Boston, MA 02115, USA; (A.M.); (J.C.P.)
| | - Andrea Vrionis
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (A.V.); (J.P.C.)
| | - Jonathan P. Charles
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (A.V.); (J.P.C.)
| | - Kayesha Hancel
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (K.H.); (F.M.); (S.I.)
| | | | - Farzad Moloudi
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (K.H.); (F.M.); (S.I.)
| | - Shams Iqbal
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (K.H.); (F.M.); (S.I.)
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (K.H.); (F.M.); (S.I.)
| |
Collapse
|