1
|
Moore T. X centromeric drive may explain the prevalence of polycystic ovary syndrome and other conditions: Genomic structure of the human X chromosome pericentromeric region is consistent with meiotic drive associated with PCOS and other conditions. Bioessays 2024; 46:e2400056. [PMID: 39072829 DOI: 10.1002/bies.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
X chromosome centromeric drive may explain the prevalence of polycystic ovary syndrome and contribute to oocyte aneuploidy, menopause, and other conditions. The mammalian X chromosome may be vulnerable to meiotic drive because of X inactivation in the female germline. The human X pericentromeric region contains genes potentially involved in meiotic mechanisms, including multiple SPIN1 and ZXDC paralogs. This is consistent with a multigenic drive system comprising differential modification of the active and inactive X chromosome centromeres in female primordial germ cells and preferential segregation of the previously inactivated X chromosome centromere to the polar body at meiosis I. The drive mechanism may explain differences in X chromosome regulation in the female germlines of the human and mouse and, based on the functions encoded by the genes in the region, the transmission of X pericentromeric genetic or epigenetic variants to progeny could contribute to preeclampsia, autism, and differences in sexual differentiation.
Collapse
Affiliation(s)
- Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Lim KT, Loh AHP. Inter-Ethnic Variations in the Clinical, Pathological, and Molecular Characteristics of Wilms Tumor. Cancers (Basel) 2024; 16:3051. [PMID: 39272909 PMCID: PMC11393868 DOI: 10.3390/cancers16173051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Wilms tumor is the commonest primary renal malignancy in children and demonstrates substantial inter-ethnic variation in clinical, pathological, and molecular characteristics. Wilms tumor occurs at a lower incidence and at a younger age in Asians compared to Caucasians and Africans. Asians also present at an earlier stage of disease, with a higher incidence of favorable histology tumors and a lower incidence of perilobar nephrogenic rests compared to Caucasians, while African children present with more advanced disease. Studies have implicated population differences in the incidence of WT1 mutations, loss of imprinting of the IGF2 locus, and loss of heterozygosity of 1p/16q, or 1q gain as possible bases for epidemiological differences in the disease profile of Wilms tumors in various ethnic groups. Yet, evidence to support these associations is confounded by differences in treatment protocols and inequalities in the availability of treatment resources and remains limited by the quality of population-based data, especially in resource-limited settings.
Collapse
Affiliation(s)
- Kia Teng Lim
- Ministry of Health Holdings, Singapore 139691, Singapore
| | - Amos H P Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore 229899, Singapore
- SingHealth-Duke NUS Global Health Institute, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore 229899, Singapore
| |
Collapse
|
3
|
Torban E, Goodyer P. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer. Am J Physiol Renal Physiol 2024; 326:F3-F19. [PMID: 37916284 DOI: 10.1152/ajprenal.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University and Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Csók Á, Micsik T, Magyar Z, Tornóczky T, Kuthi L, Nishi Y, Szirák K, Csóka M, Ottóffy G, Soltész B, Balogh I, Buglyó G. Alterations of miRNA Expression in Diffuse Hyperplastic Perilobar Nephroblastomatosis: Mapping the Way to Understanding Wilms' Tumor Development and Differential Diagnosis. Int J Mol Sci 2023; 24:ijms24108793. [PMID: 37240139 DOI: 10.3390/ijms24108793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Wilms' tumor (WT) is the most common renal malignancy in children. In diffuse hyperplastic perilobar nephroblastomatosis (DHPLN), nephrogenic rests result in a bulky enlargement of the kidney, a condition considered as a premalignant state before WT. Despite relevant clinical differences between WT and DHPLN, they are often challenging to distinguish based on histology. Molecular markers would improve differential diagnosis, but none are available at present. In our study, we investigated the potential of microRNAs (miRNAs) as such biomarkers, also aiming to shed light on the chronological order of expression changes. Formalin-fixed, paraffin-embedded (FFPE) samples from four DHPLN cases and adjacent healthy tissues were tested using a PCR array containing primers for 84 miRNAs implicated in genitourinary cancer. Expression in DHPLN was compared to WT data available in dbDEMC. Let-7, miR-135, miR-146a-5p, miR-182-5p, miR-183-5p, miR-20b-3p, miR-29b-3p, miR-195-5p and miR-17-5p showed potential to be used as biomarkers to distinguish WT and DHPLN in cases when traditional differential diagnosis is inconclusive. Our study also revealed miRNAs which may play a role in the initial steps of the pathogenesis (at a precancerous stage) and ones which become deregulated later in WT. More experiments are needed to confirm our observations and find new candidate markers.
Collapse
Affiliation(s)
- Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Micsik
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Magyar
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, 1088 Budapest, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School and Clinical Center, 7624 Pécs, Hungary
| | - Levente Kuthi
- Department of Pathology, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Yumika Nishi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztina Szirák
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Monika Csóka
- Department of Paediatrics, Semmelweis University, 1094 Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Medical School and Clinical Center, 7623 Pécs, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|