1
|
Rodríguez-Olivares JL, Kimball TN, Jeter JM, De-La-Mora-Molina H, Núñez I, Weitzel JN, Chávarri-Guerra Y. Prevalence and spectrum of germline pathogenic variants in cancer susceptibility genes among mexican patients with exocrine pancreatic cancer. Pancreatology 2024:S1424-3903(24)00749-X. [PMID: 39327123 DOI: 10.1016/j.pan.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Although universal germline genetic testing is recommended for patients with exocrine pancreatic cancer (PC), access to genetic testing remains limited in low- and middle-income countries. This study aims to narrow the gap in our understanding of the spectrum of germline pathogenic and likely pathogenic variants (PVs) in cancer susceptibility genes in the Mexican population. METHODS The landscape of PVs in cancer susceptibility genes was identified by next-generation sequencing multigene panel assays among patients with PC who were enrolled in the Clinical Cancer Genomics Community Research Network prospective registry in Mexico City. RESULTS From August 2019 to April 2023, 137 patients underwent genetic testing. The median age at diagnosis was 60 years (range 36-85), 58.4 % were women, and 38.7 % were metastatic at diagnosis. The frequency of germline PVs was 16 % (n = 22): ATM 36.4 % (n = 8), CDKN2A/p16INK4A 27.3 % (n = 6), BRCA2 9.1 % (n = 2), PALB2 9.1 % (n = 2), CHEK2 9.1 % (n = 2), TP53 4.5 % (n = 1), and NF1 4.5 % (n = 1). Additionally, 2 carriers of monoallelic germline variants in MUTYH were identified. No significant differences were observed between carriers and non-carriers in terms of family history of pancreatic cancer. CONCLUSIONS We identified a significant frequency of actionable germline PVs in Mexicans with PC, wherein the majority were in a broad spectrum of genes associated with the homologous recombination DNA repair mechanism. Most pancreatic cancer associated PVs were detected in non-BRCA genes, so our findings support the recommendation of multigene panel testing for genetic cancer risk assessment of Mexican individuals with PC.
Collapse
Affiliation(s)
- José Luis Rodríguez-Olivares
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tamara N Kimball
- Center for Genomic Medicine. Massachusetts General Hospital, Boston, MA, USA
| | - Joanne M Jeter
- Department of Oncology. City of Hope Cancer Center, Duarte, CA, USA
| | - Héctor De-La-Mora-Molina
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isaac Núñez
- Research Division. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jeffrey N Weitzel
- Division of Precision Prevention, University of Kansas Comprehensive Cancer Center, Kansas City, USA
| | - Yanin Chávarri-Guerra
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
2
|
Orsi G, Carconi C, Ghiorzo P, Carrera P, Pastorino L, Presi S, Chiaravalli M, Barbieri E, Giordano G, Sciallero S, Puccini A, Salvatore L, Cortesi L, Macchini M, Natalicchio MI, Allavena E, Pirrone C, Archibugi L, Dalmasso B, Bruno W, Tortora G, Landriscina M, Capurso G, Cascinu S, Falconi M, Reni M. Germline pathogenic variants of cancer predisposition genes in a multicentre Italian cohort of pancreatic cancer patients. Eur J Cancer 2024; 208:114226. [PMID: 39029294 DOI: 10.1016/j.ejca.2024.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND AND AIM Germline BRCA1-2 test is routinely recommended in Pancreatic Cancer (PC) patients, due to its clinical-epidemiological relevance. Data on the prevalence of germline pathogenic variants (gPV) in other cancer predisposition and DNA Damage Repair (DDR) system-related genes in unselected PC cases are sparce in Italy. We assessed this prevalence in a multicentre cohort, to derive recommendations for PC patients. METHODS Clinical data of 1200 consecutive PC patients, of any age and stage, tested with a multigene germline panel were collected. A descriptive analysis of gPV frequency and clinical variables was performed both in 1092 patients tested for an 18 genes core-panel (CP-18 cohort) and in 869 patients screened only for CDKN2A. RESULTS 11.5 % (126/1092) of CP-18 cohort patients harbored a gPV in ≥ 1 gene. Highest gPV frequencies were detected in ATM (3.1 %), BRCA2 (2.9 %), BRCA1 (1.6 %), CHEK2 (1.1 %). Patients harboring any CP-18 gene and BRCA1-2 gPV were younger and with a higher rate of personal (PH) or family history (FH) of cancer when compared to no gPV patients. The risk of having a gPV was ≥ 7 % in all subgroups of patients, including those aged > 73, with tumor stage I-III and negative FH/PH. CDKN2A gPV were detected in 2.6 % (23/869) of patients. CONCLUSIONS A remarkable prevalence of gPV in cancer predisposition and DDR genes is reported in this large multicentre cohort of consecutive and unselected PC patients. Therefore, we recommend multigene germline testing (at least including BRCA1-2, ATM, CDKN2A, PALB2) for all PC patients, irrespective of age, stage, PH/FH.
Collapse
Affiliation(s)
- Giulia Orsi
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Catia Carconi
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, Laboratory of Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy; Laboratory of Clinical Molecular Genetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenza Pastorino
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Presi
- Unit of Genomics for Human Disease Diagnosis, Laboratory of Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy; Laboratory of Clinical Molecular Genetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Chiaravalli
- Oncologia medica, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elena Barbieri
- SS Genetica Oncologica, SC Oncologia Medica, AOU Policlinico, Modena, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Ospedaliero-Universitario, Foggia, Italy; Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Puccini
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Lisa Salvatore
- Oncologia medica, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Cortesi
- SS Genetica Oncologica, SC Oncologia Medica, AOU Policlinico, Modena, Italy
| | - Marina Macchini
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Iole Natalicchio
- SSVD Biologia Molecolare Oncologica-PMMP, Genetica Oncologica e Farmacogenetica, Ambulatorio Tumori Eredo-Familiari, Policlinico Ospedaliero-Universitario, Foggia, Italy
| | - Eleonora Allavena
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Pirrone
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy; Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - William Bruno
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giampaolo Tortora
- Oncologia medica, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Ospedaliero-Universitario, Foggia, Italy; Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Pancreatic and Transplant Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
3
|
Freire MV, Martin M, Segers K, Sepulchre E, Leroi N, Coupier J, Kalantari HR, Wolter P, Collignon J, Polus M, Plomteux O, Josse C, Bours V. Digenic Inheritance of Mutations in Homologous Recombination Genes in Cancer Patients. J Pers Med 2024; 14:584. [PMID: 38929805 PMCID: PMC11204488 DOI: 10.3390/jpm14060584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES BRCA1, BRCA2, ATM, and CHEK2 are known cancer predisposition genes (CPGs), but tumor risk in patients with simultaneous pathogenic variants (PVs) in CPGs remains largely unknown. In this study, we describe six patients from five families with multiple cancers who coinherited a combination of PVs in these genes. METHODS PVs were identified using NGS DNA sequencing and were confirmed by Sanger. RESULTS Families 1, 2, and 3 presented PVs in BRCA2 and ATM, family 4 in BRCA2 and BRCA1, and family 5 in BRCA2 and CHEK2. PVs were identified using NGS DNA sequencing and were confirmed by Sanger. The first family included patients with kidney, prostate, and breast cancer, in addition to pancreatic adenocarcinomas. In the second family, a female had breast cancer, while a male from the third family had prostate, gastric, and pancreatic cancer. The fourth family included a male with pancreatic cancer, and the fifth family a female with breast cancer. CONCLUSIONS The early age of diagnosis and the development of multiple cancers in the reported patients indicate a very high risk of cancer in double-heterozygous patients associated with PVs in HR-related CPGs. Therefore, in families with patients who differ from other family members in terms of phenotype, age of diagnosis, or type of cancer, the cascade testing needs to include the study of other CPGs.
Collapse
Affiliation(s)
- Maria Valeria Freire
- Department of Human Genetics, GIGA Research Center, University of Liège and CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| | - Marie Martin
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Karin Segers
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Edith Sepulchre
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Natacha Leroi
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Jérôme Coupier
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | | | - Pascal Wolter
- Onco-Hematology Department, St Nikolaus Hospital, Hufengasse 4/8, 4700 Eupen, Belgium;
| | - Joëlle Collignon
- Department of Medical Oncology, GIGA Research Center, University of Liège and CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (J.C.); (C.J.)
| | - Marc Polus
- Department of Gastroenterology, CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| | - Olivier Plomteux
- Gastro-Enterology Department, CHC, Boulevard Patience et Beaujonc 2, 4000 Liège, Belgium;
| | - Claire Josse
- Department of Medical Oncology, GIGA Research Center, University of Liège and CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (J.C.); (C.J.)
| | - Vincent Bours
- Department of Human Genetics, GIGA Research Center, University of Liège and CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| |
Collapse
|
4
|
Souza da Silva R, Pina MJ, Cirnes L, Gouveia L, Albergaria A, Schmitt F. Comprehensive Genomic Studies on the Cell Blocks of Pancreatic Cancer. Diagnostics (Basel) 2024; 14:906. [PMID: 38732320 PMCID: PMC11083533 DOI: 10.3390/diagnostics14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Pancreatic cancer is one of the deadliest malignancies, characterized by late-stage diagnosis and limited treatment options. Comprehensive genomic profiling plays an important role in understanding the molecular mechanisms underlying the disease and identifying potential therapeutic targets. Cell blocks (CBs), derived from EUS-FNA, have become valuable resources for diagnosis and genomic analysis. We examine the molecular profile of pancreatic ductal adenocarcinoma (PDAC) using specimens obtained from CB EUS-FNA, across a large gene panel, within the framework of next-generation sequencing (NGS). Our findings revealed that over half (55%) of PDAC CB cases provided adequate nucleic acid for next-generation sequencing, with tumor cell percentages averaging above 30%. Despite challenges such as low DNA quantification and degraded DNA, sequencing reads showed satisfactory quality control statistics, demonstrating the detection of genomic alterations. Most cases (84.6%) harbored at least one gene variant, including clinically significant gene mutation variants such as KRAS, TP53, and CDKN2A. Even at minimal concentrations, as long as the extracted DNA is of high quality, performing comprehensive molecular profiling on PDAC samples from cell blocks has remained feasible. This strategy has yielded valuable information about the diagnosis, genetic landscape, and potential therapeutic targets, aligning closely with a precision cytopathology approach.
Collapse
Affiliation(s)
- Ricella Souza da Silva
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
| | - Maria João Pina
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
| | - Luís Cirnes
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
| | - Luís Gouveia
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - André Albergaria
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Fernando Schmitt
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS@RISE (Health Research Network), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Pantaleo A, Forte G, Fasano C, Lepore Signorile M, Sanese P, De Marco K, Di Nicola E, Latrofa M, Grossi V, Disciglio V, Simone C. Understanding the Genetic Landscape of Pancreatic Ductal Adenocarcinoma to Support Personalized Medicine: A Systematic Review. Cancers (Basel) 2023; 16:56. [PMID: 38201484 PMCID: PMC10778202 DOI: 10.3390/cancers16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53) involved in PDAC susceptibility. We performed a systematic review of PubMed publications reporting germline variants identified in these genes in PDAC patients. Overall, the retrieved articles included 1493 PDAC patients. A high proportion of these patients (n = 1225/1493, 82%) were found to harbor alterations in genes (ATM, BRCA1, BRCA2, PALB2) involved in the homologous recombination repair (HRR) pathway. Specifically, the remaining PDAC patients were reported to carry alterations in genes playing a role in other cancer pathways (CDKN2A, STK11, TP53; n = 181/1493, 12.1%) or in the mismatch repair (MMR) pathway (MLH1, MSH2, MSH6, PMS2; n = 87/1493, 5.8%). Our findings highlight the importance of germline genetic characterization in PDAC patients for better personalized targeted therapies, clinical management, and surveillance.
Collapse
Affiliation(s)
- Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
6
|
Pastorino L, Ghiorzo P, Bruno W. Pancreatic Cancer: From Genetic Mechanisms to Translational Challenges. Cancers (Basel) 2023; 15:4056. [PMID: 37627084 PMCID: PMC10452557 DOI: 10.3390/cancers15164056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive malignancies in industrialized countries, is predicted to become the second leading cause of cancer deaths by 2040 [...].
Collapse
Affiliation(s)
- Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi X, 16132 Genoa, Italy (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, V.le Benedetto XV, 6, 16132 Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi X, 16132 Genoa, Italy (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, V.le Benedetto XV, 6, 16132 Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi X, 16132 Genoa, Italy (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, V.le Benedetto XV, 6, 16132 Genoa, Italy
| |
Collapse
|