1
|
Mingels C, Chung KJ, Pantel AR, Rominger A, Alberts I, Spencer BA, Nardo L, Pyka T. Total-Body PET/CT: Challenges and Opportunities. Semin Nucl Med 2025; 55:21-30. [PMID: 39341688 DOI: 10.1053/j.semnuclmed.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
Long-axial field-of-view (LAFOV) systems have changed the field of molecular imaging. Since their introduction, many PET centers have installed these next-generation digital systems to provide more detailed imaging and acquire PET images in a single bed position. Indeed, vertex to thigh imaging for oncological indications can be obtained in most of the population with the currently available LAFOV systems. Moreover, Total Body (TB) PET, a subtype of LAFOV, enables imaging the entire patient-from vertex through the toes-with one bed-position for most of the population. This review aims to identify possible challenges and opportunities for PET-centers working with TB and LAFOV systems. Emphasis is placed on the strength and weaknesses in clinical routine of currently available and upcoming TB and LAFOV PET systems.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Radiology, University of California Davis, Sacramento, CA.
| | - Kevin J Chung
- Department of Radiology, University of California Davis, Sacramento, CA
| | - Austin R Pantel
- Department of Nuclear Medicine Imaging and Therapy, University of Pennsylvania, Philadelphia, PA
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ian Alberts
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, British Columbia, Canada; University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; TUM School of Medicine and Health, Munich, Germany
| |
Collapse
|
2
|
Volpe F, Nappi C, Klain M. Long-axial-field of view in prostate cancer next generation imaging: the launch pad of theragnostic. Eur J Nucl Med Mol Imaging 2024; 51:2134-2136. [PMID: 38351388 DOI: 10.1007/s00259-024-06647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Affiliation(s)
- Fabio Volpe
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Chen W, Li Y, Li Z, Jiang Y, Cui Y, Zeng J, Mo Y, Tang S, Li S, Liu L, Zhao Y, Hu Y, Fan W. Advantages and Challenges of Total-Body PET/CT at a Tertiary Cancer Center: Insights from Sun Yat-sen University Cancer Center. J Nucl Med 2024; 65:54S-63S. [PMID: 38719233 DOI: 10.2967/jnumed.123.266948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
In recent decades, researchers worldwide have directed their efforts toward enhancing the quality of PET imaging. The detection sensitivity and image resolution of conventional PET scanners with a short axial field of view have been constrained, leading to a suboptimal signal-to-noise ratio. The advent of long-axial-field-of-view PET scanners, exemplified by the uEXPLORER system, marked a significant advancement. Total-body PET imaging possesses an extensive scan range of 194 cm and an ultrahigh detection sensitivity, and it has emerged as a promising avenue for improving image quality while reducing the administered radioactivity dose and shortening acquisition times. In this review, we elucidate the application of the uEXPLORER system at the Sun Yat-sen University Cancer Center, including the disease distribution, patient selection workflow, scanning protocol, and several enhanced clinical applications, along with encountered challenges. We anticipate that this review will provide insights into routine clinical practice and ultimately improve patient care.
Collapse
Affiliation(s)
- Wanqi Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yinghe Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yongluo Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yingpu Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Jiling Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yiwen Mo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Si Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Shatong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Lei Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yumo Zhao
- United Imaging Healthcare Co. Ltd., Shanghai, China
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China;
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China;
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| |
Collapse
|
4
|
Lee EYP, Philip Ip PC, Tse KY, Kwok ST, Chiu WK, Ho G. PET/Computed Tomography Transformation of Oncology: Ovarian Cancers. PET Clin 2024; 19:207-216. [PMID: 38177053 DOI: 10.1016/j.cpet.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Over the last quarter of a century, fluorine-18-fluorodeoxyglucose (FDG) PET/computed tomography (CT) has revolutionized the diagnostic algorithm of ovarian cancer, impacting on the initial disease evaluation including staging and surgical planning, treatment response assessment and prognostication, to the most important role in detection of recurrent disease. The role of FDG PET/CT is expanding with the adoption of new therapeutic agents. Other non-FDG tracers have been explored with fibroblast activation protein inhibitor being promising. Novel tracers may provide the basis for future theragnostic work. This article will review the evolution and impact of PET/CT in ovarian cancer management.
Collapse
Affiliation(s)
- Elaine Yuen Phin Lee
- Department of Diagnostic Radiology, School of Clinical Medicine, University of Hong Kong, Room 406, Block K, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China.
| | - Pun Ching Philip Ip
- Department of Pathology, School of Clinical Medicine, University of Hong Kong, Room 019, 7/F, Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Ka Yu Tse
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, University of Hong Kong, 6/F, Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Shuk Tak Kwok
- Department of Obstetrics and Gynaecology, 6/F, Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Wan Kam Chiu
- Department of Obstetrics and Gynaecology, United Christian Hospital, 5/F, Block S, Kwun Tong, Kowloon, Hong Kong, China
| | - Grace Ho
- Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
5
|
Evangelista L, Guglielmo P, Pietrzak A, Lazar AM, Urso L, Aghaee A, Eppard E. The Future Direction of Women in Nuclear Medicine and Nuclear Medicine in Women's Health. Semin Nucl Med 2024; 54:302-310. [PMID: 38218670 DOI: 10.1053/j.semnuclmed.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/18/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
This work discusses the role of Nuclear Medicine for women's health, the role of women in the development of this emerging field and the various issues which arise from both. It emphasizes the importance of young women and their competing needs due to factors like pregnancy and work-related challenges. The objectives of this overview include improving imaging techniques, preserving fertility during cancer treatment, diagnosing pelvic and uterine conditions, developing radiopharmaceuticals for women's health, protecting female employees in Nuclear Medicine, and considering the role of artificial intelligence.
Collapse
Affiliation(s)
- Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Priscilla Guglielmo
- Nuclear Medicine Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Agata Pietrzak
- Electroradiology Department, Poznan University of Medical Sciences, Poznan, Poland; Nuclear Medicine Department, Greater Poland Cancer Centre, Poznan, Poland
| | - Alexandra Maria Lazar
- Nuclear Medicine Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", Bucharest, Romania; Carcinogenesis and Molecular Biology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", Bucharest, Romania
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Nuclear Medicine Unit, Onco-Hematological Department, University Hospital of Ferrara, Ferrara, Italy
| | - Atena Aghaee
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elisabeth Eppard
- Faculty of Medicine, University Clinic for Radiology and Nuclear Medicine, Otto von Guericke University (OvGU), Magdeburg, Germany
| |
Collapse
|
6
|
Mingels C, Sari H, Gözlügöl N, Bregenzer C, Knappe L, Krieger K, Afshar-Oromieh A, Pyka T, Nardo L, Gräni C, Alberts I, Rominger A, Caobelli F. Long-axial field-of-view PET/CT for the assessment of inflammation in calcified coronary artery plaques with [ 68 Ga]Ga-DOTA-TOC. Eur J Nucl Med Mol Imaging 2024; 51:422-433. [PMID: 37740742 PMCID: PMC10774639 DOI: 10.1007/s00259-023-06435-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE Inflamed, prone-to-rupture coronary plaques are an important cause of myocardial infarction and their early identification is crucial. Atherosclerotic plaques are characterized by overexpression of the type-2 somatostatin receptor (SST2) in activated macrophages. SST2 ligand imaging (e.g. with [68 Ga]Ga-DOTA-TOC) has shown promise in detecting and quantifying the inflammatory activity within atherosclerotic plaques. However, the sensitivity of standard axial field of view (SAFOV) PET scanners may be suboptimal for imaging coronary arteries. Long-axial field of view (LAFOV) PET/CT scanners may help overcome this limitation. We aim to assess the ability of [68 Ga]Ga-DOTA-TOC LAFOV-PET/CT in detecting calcified, SST2 overexpressing coronary artery plaques. METHODS In this retrospective study, 108 oncological patients underwent [68 Ga]Ga-DOTA-TOC PET/CT on a LAFOV system. [68 Ga]Ga-DOTA-TOC uptake and calcifications in the coronary arteries were evaluated visually and semi-quantitatively. Data on patients' cardiac risk factors and coronary artery calcium score were also collected. Patients were followed up for 21.5 ± 3.4 months. RESULTS A total of 66 patients (61.1%) presented with calcified coronary artery plaques. Of these, 32 patients had increased [68 Ga]Ga-DOTA-TOC uptake in at least one coronary vessel (TBR: 1.65 ± 0.53). Patients with single-vessel calcifications showed statistically significantly lower uptake (SUVmax 1.10 ± 0.28) compared to patients with two- (SUVmax 1.31 ± 0.29, p < 0.01) or three-vessel calcifications (SUVmax 1.24 ± 0.33, p < 0.01). There was a correlation between coronary artery calcium score (CACS) and [68 Ga]Ga-DOTA-TOC uptake, especially in the LAD (p = 0.02). Stroke and all-cause death occurred more frequently in patients with increased [68 Ga]Ga-DOTA-TOC uptake (15.63% vs. 0%; p:0.001 and 21.88% vs. 6.58%; p: 0.04, respectively) during the follow-up period. CONCLUSION [68 Ga]Ga-DOTA-TOC as a marker for the macrophage activity can reveal unknown cases of inflamed calcified coronary artery plaques using a LAFOV PET system. [68 Ga]Ga-DOTA-TOC uptake increased with the degree of calcification and correlated with higher risk of stroke and all-cause death. [68 Ga]Ga-DOTA-TOC LAFOV PET/CT may be useful to assess patients' cardiovascular risk.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Nasir Gözlügöl
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Carola Bregenzer
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Luisa Knappe
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Korbinian Krieger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Davis, CA, USA
| | - Christoph Gräni
- Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ian Alberts
- Molecular Imaging and Therapy, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 1H5, Canada
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|
7
|
Moretti R, Meffe G, Annunziata S, Capotosti A. Innovations in imaging modalities: a comparative review of MRI, long-axial field-of-view PET, and full-ring CZT-SPECT in detecting bone metastases. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:259-270. [PMID: 37870526 DOI: 10.23736/s1824-4785.23.03537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The accurate diagnosis of bone metastasis, a condition in which cancer cells have spread to the bone, is essential for optimal patient care and outcome. This review provides a detailed overview of the current medical imaging techniques used to detect and diagnose this critical condition focusing on three cardinal imaging modalities: positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Each of these techniques has unique advantages: PET/CT combines functional imaging with anatomical imaging, allowing precise localization of metabolic abnormalities; the SPECT/CT offers a wider range of radiopharmaceuticals for visualizing specific receptors and metabolic pathways; MRI stands out for its unparalleled ability to produce high-resolution images of bone marrow structures. However, as this paper shows, each modality has its own limitations. The comprehensive analysis does not stop at the technical aspects, but ventures into the wider implications of these techniques in a clinical setting. By understanding the synergies and shortcomings of these modalities, healthcare professionals can make diagnostic and therapeutic decisions. Furthermore, at a time when medical technology is evolving at a breakneck pace, this review casts a speculative eye towards future advances in the field of bone metastasis imaging, bridging the current state with future possibilities. Such insights are essential for both clinicians and researchers navigating the complex landscape of bone metastasis diagnosis.
Collapse
Affiliation(s)
- Roberto Moretti
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Guenda Meffe
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Annunziata
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Amedeo Capotosti
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy -
| |
Collapse
|
8
|
Honoré d’Este S, Andersen FL, Andersen JB, Jakobsen AL, Sanchez Saxtoft E, Schulze C, Hansen NL, Andersen KF, Reichkendler MH, Højgaard L, Fischer BM. Potential Clinical Impact of LAFOV PET/CT: A Systematic Evaluation of Image Quality and Lesion Detection. Diagnostics (Basel) 2023; 13:3295. [PMID: 37958190 PMCID: PMC10650426 DOI: 10.3390/diagnostics13213295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
We performed a systematic evaluation of the diagnostic performance of LAFOV PET/CT with increasing acquisition time. The first 100 oncologic adult patients referred for 3 MBq/kg 2-[18F]fluoro-2-deoxy-D-glucose PET/CT on the Siemens Biograph Vision Quadra were included. A standard imaging protocol of 10 min was used and scans were reconstructed at 30 s, 60 s, 90 s, 180 s, 300 s, and 600 s. Paired comparisons of quantitative image noise, qualitative image quality, lesion detection, and lesion classification were performed. Image noise (n = 50, 34 women) was acceptable according to the current standard of care (coefficient-of-varianceref < 0.15) after 90 s and improved significantly with increasing acquisition time (PB < 0.001). The same was seen in observer rankings (PB < 0.001). Lesion detection (n = 100, 74 women) improved significantly from 30 s to 90 s (PB < 0.001), 90 s to 180 s (PB = 0.001), and 90 s to 300 s (PB = 0.002), while lesion classification improved from 90 s to 180 s (PB < 0.001), 180 s to 300 s (PB = 0.021), and 90 s to 300 s (PB < 0.001). We observed improved image quality, lesion detection, and lesion classification with increasing acquisition time while maintaining a total scan time of less than 5 min, which demonstrates a potential clinical benefit. Based on these results we recommend a standard imaging acquisition protocol for LAFOV PET/CT of minimum 180 s to maximum 300 s after injection of 3 MBq/kg 2-[18F]fluoro-2-deoxy-D-glucose.
Collapse
Affiliation(s)
- Sabrina Honoré d’Este
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Julie Bjerglund Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Annika Loft Jakobsen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Eunice Sanchez Saxtoft
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christina Schulze
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Naja Liv Hansen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Michala Holm Reichkendler
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Copenhagen University, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Copenhagen University, Blegdamsvej 3b, 2200 Copenhagen, Denmark
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
9
|
Mingels C, Loebelenz LI, Huber AT, Alberts I, Rominger A, Afshar-Oromieh A, Obmann VC. Literature review: Imaging in prostate cancer. Curr Probl Cancer 2023:100968. [PMID: 37336689 DOI: 10.1016/j.currproblcancer.2023.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 06/21/2023]
Abstract
Imaging plays an increasingly important role in the detection and characterization of prostate cancer (PC). This review summarizes the key conventional and advanced imaging modalities including multiparametric magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging and tries to instruct clinicians in finding the best image modality depending on the patient`s PC-stage. We aim to give an overview of the different image modalities and their benefits and weaknesses in imaging PC. Emphasis is put on primary prostate cancer detection and staging as well as on recurrent and castration resistant prostate cancer. Results from studies using various imaging techniques are discussed and compared. For the different stages of PC, advantages and disadvantages of the different imaging modalities are discussed. Moreover, this review aims to give an outlook about upcoming, new imaging modalities and how they might be implemented in the future into clinical routine. Imaging patients suffering from PC should aim for exact diagnosis, accurate detection of PC lesions and should mirror the true tumor burden. Imaging should lead to the best patient treatment available in the current PC-stage and should avoid unnecessary therapeutic interventions. New image modalities such as long axial field of view PET/CT with photon-counting CT and radiopharmaceuticals like androgen receptor targeting radiopharmaceuticals open up new possibilities. In conclusion, PC imaging is growing and each image modality is aiming for improvement.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| | - Laura I Loebelenz
- Department of Interventional, Pediatric and Diagnostic Radiology, Inselspital, University of Bern, Switzerland
| | - Adrian T Huber
- Department of Interventional, Pediatric and Diagnostic Radiology, Inselspital, University of Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Verena C Obmann
- Department of Interventional, Pediatric and Diagnostic Radiology, Inselspital, University of Bern, Switzerland
| |
Collapse
|