1
|
Eum DY, Lee C, Tran CS, Lee J, Park SY, Jeong MS, Jin Y, Shim JW, Lee SR, Koh M, Vasileva EA, Mishchenko NP, Park SJ, Choi SH, Choi YJ, Yun H, Heo K. Regulatory role of Echinochrome A in cancer-associated fibroblast-mediated lung cancer cell migration. Toxicol Res 2024; 40:409-419. [PMID: 38911538 PMCID: PMC11187030 DOI: 10.1007/s43188-024-00232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 06/25/2024] Open
Abstract
Echinochrome A (Ech A), a marine biosubstance isolated from sea urchins, is a strong antioxidant, and its clinical form, histochrome, is being used to treat several diseases, such as ophthalmic, cardiovascular, and metabolic diseases. Cancer-associated fibroblasts (CAFs) are a component of the tumor stroma and induce phenotypes related to tumor malignancy, including epithelial-mesenchymal transition (EMT) and cancer stemness, through reciprocal interactions with cancer cells. Here, we investigated whether Ech A modulates the properties of CAFs and alleviates CAF-induced lung cancer cell migration. First, we observed that the expression levels of CAF markers, Vimentin and fibroblast-activating protein (FAP), were decreased in Ech A-treated CAF-like MRC5 cells. The mRNA transcriptome analysis revealed that in MRC5 cells, the expression of genes associated with cell migration was largely modulated after Ech A treatment. In particular, the expression and secretion of cytokine and chemokine, such as IL6 and CCL2, stimulating cancer cell metastasis was reduced through the inactivation of STAT3 and Akt in MRC5 cells treated with Ech A compared to untreated MRC5 cells. Moreover, while conditioned medium from MRC5 cells enhanced the migration of non-small cell lung cancer cells, conditioned medium from MRC5 cells treated with Ech A suppressed cancer cell migration. In conclusion, we suggest that Ech A might be a potent adjuvant that increases the efficacy of cancer treatments to mitigate lung cancer progression.
Collapse
Affiliation(s)
- Da-Young Eum
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241 Republic of Korea
| | - Chaeyoung Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
| | - Cong So Tran
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241 Republic of Korea
| | - Jinyoung Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241 Republic of Korea
| | - Soon Yong Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
| | - Mi-So Jeong
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
| | - Yunho Jin
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
| | - Jae Woong Shim
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
| | - Seoung Rak Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241 Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241 Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan, 46241 Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 100 Let Vladivostoku Prosp., 159, Vladivostok, 690022 Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 100 Let Vladivostoku Prosp., 159, Vladivostok, 690022 Russia
| | - Seong-Joon Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
| | - Yoo Jin Choi
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241 Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241 Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, 46033 Republic of Korea
| |
Collapse
|
2
|
Dhungel N, Dragoi AM. Exploring the multifaceted role of direct interaction between cancer cells and fibroblasts in cancer progression. Front Mol Biosci 2024; 11:1379971. [PMID: 38863965 PMCID: PMC11165130 DOI: 10.3389/fmolb.2024.1379971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The interaction between the tumor microenvironment (TME) and the cancer cells is a complex and mutually beneficial system that leads to rapid cancer cells proliferation, metastasis, and resistance to therapy. It is now recognized that cancer cells are not isolated, and tumor progression is governed among others, by many components of the TME. The reciprocal cross-talk between cancer cells and their microenvironment can be indirect through the secretion of extracellular matrix (ECM) proteins and paracrine signaling through exosomes, cytokines, and growth factors, or direct by cell-to-cell contact mediated by cell surface receptors and adhesion molecules. Among TME components, cancer-associated fibroblasts (CAFs) are of unique interest. As one of the most abundant components of the TME, CAFs play key roles in the reorganization of the extracellular matrix, facilitating metastasis and chemotherapy evasion. Both direct and indirect roles have been described for CAFs in modulating tumor progression. In this review, we focus on recent advances in understanding the role of direct contact between cancer cells and cancer-associated fibroblasts (CAFs) in driving tumor development and metastasis. We also summarize recent findings on the role of direct contact between cancer cells and CAFs in chemotherapy resistance.
Collapse
Affiliation(s)
- Nilu Dhungel
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, United States
| |
Collapse
|
3
|
Smorodin E, Chuzmarov V, Veidebaum T. The Potential of Integrative Cancer Treatment Using Melatonin and the Challenge of Heterogeneity in Population-Based Studies: A Case Report of Colon Cancer and a Literature Review. Curr Oncol 2024; 31:1994-2023. [PMID: 38668052 PMCID: PMC11049198 DOI: 10.3390/curroncol31040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a multifunctional hormone regulator that maintains homeostasis through circadian rhythms, and desynchronization of these rhythms can lead to gastrointestinal disorders and increase the risk of cancer. Preliminary clinical studies have shown that exogenous melatonin alleviates the harmful effects of anticancer therapy and improves quality of life, but the results are still inconclusive due to the heterogeneity of the studies. A personalized approach to testing clinical parameters and response to integrative treatment with nontoxic and bioavailable melatonin in patient-centered N-of-1 studies deserves greater attention. This clinical case of colon cancer analyzes and discusses the tumor pathology, the adverse effects of chemotherapy, and the dynamics of markers of inflammation (NLR, LMR, and PLR ratios), tumors (CEA, CA 19-9, and PSA), and hemostasis (D-dimer and activated partial thromboplastin time). The patient took melatonin during and after chemotherapy, nutrients (zinc, selenium, vitamin D, green tea, and taxifolin), and aspirin after chemotherapy. The patient's PSA levels decreased during CT combined with melatonin (19 mg/day), and melatonin normalized inflammatory markers and alleviated symptoms of polyneuropathy but did not help with thrombocytopenia. The results are analyzed and discussed in the context of the literature on oncostatic and systemic effects, alleviating therapy-mediated adverse effects, association with survival, and N-of-1 studies.
Collapse
Affiliation(s)
- Eugeniy Smorodin
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| | - Valentin Chuzmarov
- 2nd Surgery Department, General Surgery and Oncology Surgery Centre, North Estonia Medical Centre, J. Sütiste Str. 19, 13419 Tallinn, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| |
Collapse
|
4
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
5
|
Zhang H, Liu C, Zhai X, Zhang Q, Zhou Y, Huang H, Ding M, Shi Q, Liu Y, Tang Y, Liu G, Wang H. Disfunction of communication among immune cells in minimal-deviation adenocarcinoma of the cervix as an immunotherapeutic opportunity. Int Immunopharmacol 2023; 124:110907. [PMID: 37683397 DOI: 10.1016/j.intimp.2023.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Minimal deviation adenocarcinoma (MDA) of the uterine cervix, also referred to as malignant adenoma, is a rare subtype of cervical adenocarcinoma that exhibits histological characteristics resembling those of benign tumors, resulting in a low diagnostic rate and a lack of effective treatment options. The transcriptomic features of MDA at the single-cell resolution and within the tumor microenvironment (TME) remain unclear. In this study, we conducted single-cell transcriptomic analyses of MDA samples (Ca) and adjacent normal tissues (PCa). The present study reveals the prevalence of dendritic cells (DCs) and T cells in the carcinoma (Ca) of mammary ductal adenocarcinoma (MDA), with DCs undergoing significant metabolic reprogramming and immune stress. Additionally, our findings demonstrate the crucial involvement of DCs and T cells in the pathogenesis and metastatic progression of MDA, as evidenced by single-cell transcriptomic profiling of MDA and HPV samples. This resource provides a more profound understanding of the indolent nature of MDA and may prove useful in the development of MDA immunotherapy.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250012, China
| | - Xiaoqian Zhai
- Department of Pathology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Qianqian Zhang
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250012, China
| | - Yao Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Hu Huang
- Department of Pathology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Mingde Ding
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Qiang Shi
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Yan Liu
- Department of Ultrasound, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Guanghai Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| | - Hongmei Wang
- School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| |
Collapse
|