1
|
Haasjes C, Vu THK, Beenakker JWM. Patient-specific mapping of fundus photographs to three-dimensional ocular imaging. Med Phys 2024. [PMID: 39666442 DOI: 10.1002/mp.17576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Ocular proton beam therapy (OPT) planning would benefit from an accurate incorporation of fundus photographs, as various intra-ocular structures, such as the fovea, are not visible on conventional modalities such as Magnetic Resonance Imaging (MRI). However, the use of fundus photographs in OPT is limited, as the eye's optics induce a nonuniform patient-specific deformation to the images. PURPOSE To develop a method to accurately map fundus photographs to three-dimensional images. METHODS Personalized optical raytracing simulations were performed for 27 subjects, using subject-specific eye models based on corneal topography, biometry, and MRI. Light rays were traced through the eye for angles of 0°-85° with respect to the optical axis, in steps of 5°. These simulations provided a reference mapping between camera angles and retinal locations and were used to develop a mapping method without raytracing. The accuracy of this and earlier proposed methods was evaluated. Finally, the most accurate method was implemented in RayOcular, an image-based OPT planning system, and the fundus photography-based tumor contour was compared with MRI. RESULTS When a patient-specific second nodal point is taken as a reference to describe the retinal location, the camera, and retinal angles show a strong linear relation with a small variation between subjects. At a camera angle of 60°, for example, a corresponding retinal angle of 59.9° ± 0.4° (mean ± SD) was found. When this linear relation is used to predict the corresponding retinal location (without raytracing) of a camera angle of 40°, the mean (Euclidian distance) error in the retinal location was 0.02 mm (SD = 0.06 mm), which was significantly (p < 0.001) lower than earlier proposed methods including EYEPLAN 4.16 mm (SD = 0.25 mm), the Lamberth projection -0.12 mm (SD = 0.46 mm) or polar projection 0.26 mm (SD = 0.57 mm). When implemented in the fundus view of RayOcular, the median distance between contours based on MRI and fundus photography was 0.2 mm (IQR = 0.1-0.3 mm). CONCLUSIONS The second nodal point provides a patient-specific reference for an accurate mapping of fundus photographs to three-dimensional images with sub-millimeter errors.
Collapse
Affiliation(s)
- Corné Haasjes
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - T H Khanh Vu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan-Willem M Beenakker
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Hrbacek J, Kacperek A, Beenakker JWM, Mortimer L, Denker A, Mazal A, Shih HA, Dendale R, Slopsema R, Heufelder J, Mishra KK. PTCOG Ocular Statement: Expert Summary of Current Practices and Future Developments in Ocular Proton Therapy. Int J Radiat Oncol Biol Phys 2024; 120:1307-1325. [PMID: 38971383 DOI: 10.1016/j.ijrobp.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Although rare cancers, ocular tumors are a threat to vision, quality of life, and potentially life expectancy of a patient. Ocular proton therapy (OPT) is a powerful tool for successfully treating this disease. The Particle Therapy Co-Operative Ocular Group) formulated an Evidence and Expert-Based Executive Summary of Current Practices and Future Developments in OPT: comparative dosimetric and clinical analysis with the different OPT systems is essential to set up planning guidelines, implement best practices, and establish benchmarks for eye preservation, vision, and quality of life measures. Contemporary prospective trials in select subsets of patients (eg, tumors near the optic disc and/or macula) may allow for dosimetric and clinical analysis between different radiation modalities and beamline systems to evaluate differences in radiation delivery and penumbra, and resultant tumor control, normal tissue complication rates, and overall clinical cost-effectiveness. To date, the combination of multimodal imaging (fundus photography, ultrasound, etc), ophthalmologist assessment, and clip surgery with radiation planning have been keys to successful treatment. Increased use of three-dimensional imaging (computed tomography/magnetic resonance imaging) is anticipated although its spatial resolution might be a limiting factor (eg, detection of flat diffuse tumor parts). Commercially produced ocular treatment-planning systems are under development and their future use is expected to expand across OPT centers. Future continuity of OPT will depend on the following: (1) maintaining and upgrading existing older dedicated low-energy facilities, (2) maintaining shared, degraded beamlines at large proton therapy centers, and (3) developing adapted gantry beams of sufficient quality to maintain the clinical benefits of sharp beam conformity. Option (1) potentially offers the sharpest beams, minimizing impact on healthy tissues, whereas (2) and (3) potentially offer the advantage of substantial long-term technical support and development as well as the introduction of new approaches. Significant patient throughputs and close cooperation between medical physics, ophthalmology, and radiation therapy, underpinned by mutual understanding, is crucial for a successful OPT service.
Collapse
Affiliation(s)
- Jan Hrbacek
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.
| | | | - Jan-Willem M Beenakker
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands; Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands; HollandPTC, Delft, Netherlands
| | - Linda Mortimer
- Medical Physics Department, The Clatterbridge Cancer Centre NHS Foundation Trust, Birkenhead, United Kingdom
| | - Andrea Denker
- Helmholtz-Zentrum Berlin für Materialien und Energie, Proton Therapy (BE-APT), Berlin, Germany
| | - Alejandro Mazal
- Medical Physics Service, Centro de Protonterapia Quironsalud, Madrid, Spain
| | - Helen A Shih
- Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Remi Dendale
- Institut Curie Protontherapy Center, Orsay, France
| | - Roelf Slopsema
- Department of Radiation Oncology, Emory Proton Therapy Center, Atlanta, Georgia
| | - Jens Heufelder
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, BerlinProtonen am HZB, Berlin, Germany
| | - Kavita K Mishra
- Proton Ocular Radiation Therapy Program, Department of Radiation Oncology, Osher Center for Integrative Health, Osher Foundation Endowed Chair in Clinical Programs in Integrative Health, University of California San Francisco, San Francisco, California
| |
Collapse
|
3
|
Klaassen L, Jaarsma-Coes MG, Marinkovic M, Luyten GPM, Rasch CRN, Ferreira TA, Beenakker JWM. Quantitative Perfusion-Weighted Magnetic Resonance Imaging in Uveal Melanoma. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 39250118 PMCID: PMC11385876 DOI: 10.1167/iovs.65.11.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Purpose Perfusion-weighted imaging (PWI; magnetic resonance imaging [MRI]) has been shown to provide valuable biological tumor information in uveal melanoma (UM). Clinically used semiquantitative methods do not account for tumor pigmentation and eye movement. We hypothesize that a quantitative PWI method that incorporates these, provides a more accurate description of tumor perfusion than the current clinical method. The aim of this study was to test this in patients with UM before and after radiotherapy. Methods Perfusion-weighted 3T MRIs were retrospectively analyzed in 47 patients with UM before and after radiotherapy. Tofts pharmacokinetic modeling was performed to determine vascular permeability (Ktrans), extracellular extravascular space (ve), and reflux rate (kep). These were compared with semiquantitative clinical parameters including peak intensity and outflow percentage. Results The effect of tumor pigmentation on peak intensity and outflow percentage was statistically significant (P < 0.01) and relative peak intensity was significantly different between melanotic and amelanotic tumors (1.5 vs. 1.9, P < 0.01). Before radiotherapy, median tumor Ktrans was 0.63 min-1 (range = 0.06-1.42 min-1), median ve was 0.23 (range = 0.09-0.63), and median kep was 2.3 min-1 (range = 0.6-5.0 min-1). After radiotherapy, 85% showed a decrease in Ktrans and kep (P < 0.01). Changes in tumor pigmentation before and after radiotherapy were small and not significant (median increase in T1 of 33 ms, P = 0.55). Conclusions Quantitative PWI parameters decreased significantly after radiotherapy and can therefore can serve as an early biomarker for treatment response assessment. However, due to the nonsignificant changes in tumor pigmentation before and after radiotherapy, the current semiquantitative method appears to be sufficiently sensitive for detection of changes in tumor perfusion.
Collapse
Affiliation(s)
- Lisa Klaassen
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, The Netherlands
| | - Myriam G Jaarsma-Coes
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Marina Marinkovic
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
| | - Coen R N Rasch
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| | - Teresa A Ferreira
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Jan-Willem M Beenakker
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, The Netherlands
| |
Collapse
|
4
|
Kulbay M, Marcotte E, Remtulla R, Lau THA, Paez-Escamilla M, Wu KY, Burnier MN. Uveal Melanoma: Comprehensive Review of Its Pathophysiology, Diagnosis, Treatment, and Future Perspectives. Biomedicines 2024; 12:1758. [PMID: 39200222 PMCID: PMC11352094 DOI: 10.3390/biomedicines12081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. Recent advances highlight the role of tumor-derived extracellular vesicles (TEV) and circulating hybrid cells (CHC) in UM tumorigenesis. Bridged with liquid biopsies, a novel technology that has shown incredible performance in detecting cancer cells or products derived from tumors in bodily fluids, it can significantly impact disease management and outcome. The aim of this comprehensive literature review is to provide a summary of current knowledge and ongoing advances in posterior UM pathophysiology, diagnosis, and treatment. The first section of the manuscript discusses the complex and intricate role of TEVs and CHCs. The second part of this review delves into the epidemiology, etiology and risk factors, clinical presentation, and prognosis of UM. Third, current diagnostic methods, ensued by novel diagnostic tools for the early detection of UM, such as liquid biopsies and artificial intelligence-based technologies, are of paramount importance in this review. The fundamental principles, limits, and challenges associated with these diagnostic tools, as well as their potential as a tracker for disease progression, are discussed. Finally, a summary of current treatment modalities is provided, followed by an overview of ongoing preclinical and clinical research studies to provide further insights on potential biomolecular pathway alterations and therapeutic targets for the management of UM. This review is thus an important resource for all healthcare professionals, clinicians, and researchers working in the field of ocular oncology.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Raheem Remtulla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Tsz Hin Alexander Lau
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Manuel Paez-Escamilla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Lim JZ, Gokul A, Misra SL, Pan X, Charlton A, McGhee CNJ. An optimized 3T MRI scan protocol to assess iris melanoma with subsequent histopathological verification - A prospective study. Asia Pac J Ophthalmol (Phila) 2024; 13:100047. [PMID: 38417788 DOI: 10.1016/j.apjo.2024.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) has demonstrated high levels of tissue contrast, accuracy and reproducibility in evaluating posterior uveal melanoma. Owing to smaller size, the role of MRI in detecting and characterising iris melanoma has not yet been explored. AIMS To develop a protocol to image iris melanoma and describe the MRI characteristics of histopathological-confirmed iris melanoma. MATERIALS AND METHODS An optimised MRI protocol, using a 3T MRI scanner and a 32-channel head coil, was developed to image iris tumours. A prospective, single-centre, 12-month study was conducted on all patients with lesions suspicious for iris melanoma. All patients were offered an MRI scan in addition to the standardised clinical procedures. Image quality comparison was made with existing clinical investigations. Iris melanoma characteristics on MRI are described. RESULTS A successful optimised MRI scan protocol was developed that was able to detect and characterise iris melanoma. One normal participant and five patients with subsequent histopathological-confirmed iris melanoma (n = 6) were recruited. Four patients completed the full MRI sequence. All iris melanoma were detected on at least one T1- or T2-weighted images. When compared to the vitreous, all iris melanomas demonstrated hyper-intensity on T1-weighted images and hypo-intensity on T2-weighted images. On T1-mapping, T1-values of iris melanoma demonstrated an inverse relationship with the degree of tumour pigmentation. CONCLUSIONS This study highlights an optimised, easily reproducible MRI scan protocol to image iris melanoma. Numerous MR imaging characteristics of iris melanoma are reported for the first time and a potential non-invasive tumour biomarker is described.
Collapse
Affiliation(s)
- Joevy Z Lim
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand; Department of Ophthalmology, Te Whatu Ora - Health New Zealand Auckland, New Zealand
| | - Akilesh Gokul
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Xingzheng Pan
- Department of Physiology, School of Medical Science, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Amanda Charlton
- Department of Histopathology, Te Whatu Ora - Health New Zealand Auckland, New Zealand
| | - Charles N J McGhee
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand; Department of Ophthalmology, Te Whatu Ora - Health New Zealand Auckland, New Zealand.
| |
Collapse
|