1
|
Murra N, Pommert NS, Schmidt B, Issa RS, Kaehler M, Bruckmueller H, Tim V, Cascorbi I, Waetzig V. Regulation and Function of CCL2 and N-Myc in Retinoic Acid-treated Neuroblastoma Cells. Cancer Genomics Proteomics 2025; 22:90-102. [PMID: 39730182 PMCID: PMC11696317 DOI: 10.21873/cgp.20490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells. MATERIALS AND METHODS In Kelly or SH-SY5Y cells, viability was quantified by cell fitness assays. Expression was analyzed using quantitative PCR and the regulation of proteins using enzyme-linked immunoabsorbent assays (ELISA) or western blots. RESULTS In MYCN-amplified Kelly cells, endogenous CCL2 levels were significantly lower compared to MYCN non-amplified SH-SY5Y cells. Treatment with 5 μM RA increased CCL2 release in both cell lines, but reduced N-Myc levels and cell numbers in Kelly cells. Over-expression of MYCN enhanced viability in SH-SY5Y cells, but did not affect RA-induced CCL2 release, while supplementation of CCL2 in Kelly cells did not prevent RA-mediated growth reduction. Impaired N-Myc or CCL2 signaling reduced the survival of all RA-treated cells and inhibition of N-Myc also decreased CCL2 levels. However, attenuated survival signaling was not generally associated with reduced levels of N-Myc or CCL2. Co-application of RA and the growth factor receptor inhibitors cediranib or crizotinib decreased N-Myc levels only in Kelly cells, while CCL2 release was dependent on the cell type and stimulus. CONCLUSION CCL2 and N-Myc promote the viability of RA-treated cells, although the levels of these mediators were not consistently correlated with cellular outcomes, especially during apoptotic signaling.
Collapse
Affiliation(s)
- Nanke Murra
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nina Sophie Pommert
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Berit Schmidt
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reema Sami Issa
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Vera Tim
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Vicki Waetzig
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
2
|
Corcoran JPT, Mey J. Editorial: The role of retinoic acid signaling in maintenance and regeneration of the CNS: from mechanisms to therapeutic targeting. Front Mol Neurosci 2024; 17:1491745. [PMID: 39558937 PMCID: PMC11570587 DOI: 10.3389/fnmol.2024.1491745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Jonathan P. T. Corcoran
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Jörg Mey
- Hospital Nacional de Parapléjicos, Toledo, Spain
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Blount SL, Liu X, McBride JD. The Utilization of PRAME in the Diagnosis, Prognosis, and Treatment of Melanoma. Cells 2024; 13:1740. [PMID: 39451258 PMCID: PMC11505691 DOI: 10.3390/cells13201740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Melanoma, a deadly form of skin cancer, has seen improved survival rates due to advances in diagnosis and treatment, yet the need for further improvement remains critical. Tumor-associated antigens, such as PRAME (Preferentially Expressed Antigen in Melanoma), offer promising avenues for enhanced diagnostic precision, prognostic assessment, and targeted immunotherapy. PRAME, a cancer testis antigen, is selectively expressed in various cancers, including melanoma, and plays a key role in promoting tumorigenesis through inhibition of retinoic acid signaling, epithelial-to-mesenchymal transition, and immune evasion. This review explores the diagnostic utility of PRAME in distinguishing melanoma from benign nevi, its prognostic value in aggressive melanoma subtypes, and its potential as a therapeutic target in cancer vaccines and adoptive T-cell therapies. While PRAME-targeted therapies face challenges such as tumor heterogeneity and immune suppression, ongoing research aims to overcome these barriers, offering hope for more effective melanoma treatments.
Collapse
Affiliation(s)
- Samuel L. Blount
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Xiaochen Liu
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jeffrey D. McBride
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
4
|
Kegyes D, Thiagarajan PS, Ghiaur G. MRD in Acute Leukemias: Lessons Learned from Acute Promyelocytic Leukemia. Cancers (Basel) 2024; 16:3208. [PMID: 39335179 PMCID: PMC11430625 DOI: 10.3390/cancers16183208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Advances in molecular biology, polymerase chain reaction (PCR), and next-generation sequencing (NGS) have transformed the concept of minimal residual disease (MRD) from a philosophical idea into a measurable reality. Current Treatment Paradigms and Lessons Learned from APL: Acute promyelocytic leukemia (APL) leads the way in this transformation, initially using PCR to detect MRD in patients in remission, and more recently, aiming to eliminate it entirely with modern treatment strategies. Along the way, we have gained valuable insights that, when applied to other forms of acute leukemia, hold the potential to significantly improve the outcomes of these challenging diseases. Does the BM Microenvironment Play a Role in MRD?: In this review, we explore the current use of MRD in the management of acute leukemia and delve into the biological processes that contribute to MRD persistence, including its overlap with leukemia stem cells and the role of the bone marrow microenvironment.
Collapse
Affiliation(s)
- David Kegyes
- MedFuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- The Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Gabriel Ghiaur
- The Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Esposito M, Amory JK, Kang Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J Exp Med 2024; 221:e20240519. [PMID: 39133222 PMCID: PMC11318670 DOI: 10.1084/jem.20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
The retinoid nuclear receptor pathway, activated by the vitamin A metabolite retinoic acid, has been extensively investigated for over a century. This study has resulted in conflicting hypotheses about how the pathway regulates health and how it should be pharmaceutically manipulated. These disagreements arise from a fundamental contradiction: retinoid agonists offer clear benefits to select patients with rare bone growth disorders, acute promyelocytic leukemia, and some dermatologic diseases, yet therapeutic retinoid pathway activation frequently causes more harm than good, both through acute metabolic dysregulation and a delayed cancer-promoting effect. In this review, we discuss controlled clinical, mechanistic, and genetic data to suggest several disease settings where inhibition of the retinoid pathway may be a compelling therapeutic strategy, such as solid cancers or metabolic syndromes, and also caution against continued testing of retinoid agonists in cancer patients. Considerable evidence suggests a central role for retinoid regulation of immunity and metabolism, with therapeutic opportunities to antagonize retinoid signaling proposed in cancer, diabetes, and obesity.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Kayothera, Inc , Seattle, WA, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch , Princeton, NJ, USA
| |
Collapse
|
6
|
Bozhkov AI, Akzhyhitov RA, Bilovetska SG, Ivanov EG, Dobrianska NI, Bondar AY. The Effect of Retinol Acetate on Liver Fibrosis Depends on the Temporal Features of the Development of Pathology. J Clin Exp Hepatol 2024; 14:101338. [PMID: 38264572 PMCID: PMC10801314 DOI: 10.1016/j.jceh.2023.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Background The effect of vitamin A on the manifestations of liver fibrosis is controversial and establishing the causes of its multidirectional influence is an urgent problem. In the work, the functional characteristics of the liver with Cu-induced fibrosis were determined after the restoration of vitamin A to the control level at the F0/F1 stage. Methods In animals with liver fibrosis, classical indicators of physiology, functional activity of the liver, histological, and hematological characteristics were determined; the content of calcium and ROS was determined in bone marrow cells. Results It was shown that in the liver with Cu-induced fibrosis, the restoration of vitamin A content to control values after per os injections of a retinol acetate solution at a dose of 0.10 mg (300 IU)/100 g of body weight in the early stages of this pathology development (Fо/F1) was accompanied by: a decrease in the number of immunocompetent cells in the bloodstream to control values; normalization of the amount of calcium ions and ROS in bone marrow cells; restoration to the control level of activity of alkaline phosphatase; an increase in the number of binuclear hepatocytes; and restoration of the dynamics of body weight growth in experimental animals, even against the background of the ongoing action of the hepatotoxic factor. Conclusion We came to the conclusion that the multidirectional action of vitamin A, which occurs in liver fibrosis, depends not only on the concentration of vitamin A in the liver but also on temporal characteristics of cellular and metabolic links involved in the adaptive response formation. It was suggested that knowledge of the initial temporal metabolic characteristics and the amount of vitamin A in the liver, taking into account the stages of fibrosis development, can be an effective way to restore the altered homeostatic parameters of the body.
Collapse
Affiliation(s)
- Anatoly I. Bozhkov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Rustam A. Akzhyhitov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Svitlana G. Bilovetska
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Evgeny G. Ivanov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Nataliia I. Dobrianska
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Anastasiia Yu Bondar
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| |
Collapse
|