1
|
Aloss K, Leroy Viana PH, Bokhari SMZ, Giunashvili N, Schvarcz CA, Bócsi D, Koós Z, Benyó Z, Hamar P. Ivermectin Synergizes with Modulated Electro-hyperthermia and Improves Its Anticancer Effects in a Triple-Negative Breast Cancer Mouse Model. ACS Pharmacol Transl Sci 2024; 7:2496-2506. [PMID: 39144564 PMCID: PMC11320741 DOI: 10.1021/acsptsci.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with limited treatment options. Modulated electro-hyperthermia (mEHT) is a novel adjuvant cancer therapy that induces selective cancer damage. However, mEHT upregulates heat shock protein beta 1 (HSPB1), a cancer-promoting stress chaperone molecule. Thus, we investigated whether ivermectin (IVM), an anthelmintic drug, may synergize with mEHT and enhance its anticancer effects by inhibiting HSPB1 phosphorylation. Isogenic 4T1 TNBC cells were inoculated into BALB/c mice and treated with mEHT, IVM, or a combination of both. IVM synergistically improved the tumor growth inhibition achieved by mEHT. Moreover, IVM downregulated mEHT-induced HSPB1 phosphorylation. Thus, the strongest cancer tissue damage was observed in the mEHT + IVM-treated tumors, coupled with the strongest apoptosis induction and proliferation inhibition. In addition, there was no significant body weight loss in mice treated with mEHT and IVM, indicating that this combination was well-tolerated. In conclusion, mEHT combined with IVM is a new, effective, and safe option for the treatment of TNBC.
Collapse
Affiliation(s)
- Kenan Aloss
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26., Budapest 1085, Hungary
- Department
of Pharmacology and Pharmacotherapy, Semmelweis
University, Budapest 1089, Hungary
| | | | | | - Nino Giunashvili
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26., Budapest 1085, Hungary
| | - Csaba András Schvarcz
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26., Budapest 1085, Hungary
- HUN-REN-SU
Cerebrovascular and Neurocognitive Diseases Research Group, Tűzoltó utca 37-47., Budapest 1094, Hungary
| | - Dániel Bócsi
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26., Budapest 1085, Hungary
| | - Zoltán Koós
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26., Budapest 1085, Hungary
| | - Zoltán Benyó
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26., Budapest 1085, Hungary
- HUN-REN-SU
Cerebrovascular and Neurocognitive Diseases Research Group, Tűzoltó utca 37-47., Budapest 1094, Hungary
| | - Péter Hamar
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26., Budapest 1085, Hungary
| |
Collapse
|
2
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|