1
|
Hesham HM, Dokla EME, Elrazaz EZ, Lasheen DS, Abou El Ella DA. FLT3-PROTACs for combating AML resistance: Analytical overview on chimeric agents developed, challenges, and future perspectives. Eur J Med Chem 2024; 277:116717. [PMID: 39094274 DOI: 10.1016/j.ejmech.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The urgent and unmet medical demand of acute myeloid leukemia (AML) patients has driven the drug discovery process for expansion of the landscape of AML treatment. Despite the several agents developed for treatment of AML, more than 60 % of treated patients undergo relapse again after re-emission, thus, no complete cure for this complex disease has been reached yet. Targeted oncoprotein degradation is a new paradigm that can be employed to solve drug resistance, disease relapse, and treatment failure in complex diseases as AML, the most lethal hematological malignancy. AML is an aggressive blood cancer form and the most common type of acute leukemia, with bad outcomes and a very poor 5-year survival rate. FLT3 mutations occur in about 30 % of AML cases and FLT3-ITD is associated with poor prognosis of this disease. Prevalent FLT3 mutations include internal tandem duplication and point mutations (e.g., D835) in the tyrosine kinase domain, which induce FLT3 kinase activation and result in survival and proliferation of AML cells again. Currently approved FLT3 inhibitors suffer from limited clinical efficacy due to FLT3 reactivation by mutations, therefore, alternative new treatments are highly needed. Proteolysis-targeting chimera (PROTAC) is a bi-functional molecule that consists of a ligand of the protein of interest, FLT3 inhibitor in our case, that is covalently linked to an E3 ubiquitin ligase ligand. Upon FLT3-specific PROTAC binding to FLT3, the PROTAC can recruit E3 for FLT3 ubiquitination, which is subsequently subjected to proteasome-mediated degradation. In this review we tried to address the question if PROTAC technology has succeeded in tackling the disease relapse and treatment failure of AML. Next, we explored the latest FLT3-targeting PROTACs developed in the past few years such as quizartinib-based PROTACs, dovitinib-based PROTACs, gilteritinib-based PROTACs, and others. Then, we followed with a deep analysis of their advantages regarding potency improvement and overcoming AML drug resistance. Finally, we discussed the challenges facing these chimeric molecules with proposed future solutions to circumvent them.
Collapse
Affiliation(s)
- Heba M Hesham
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Eman Z Elrazaz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Prajapati SK, Kumari N, Bhowmik D, Gupta R. Recent advancements in biomarkers, therapeutics, and associated challenges in acute myeloid leukemia. Ann Hematol 2024; 103:4375-4400. [PMID: 39198271 DOI: 10.1007/s00277-024-05963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of leukemia that has a high mortality rate. The reasons for high mortality in patients with AML are therapeutic resistance, limited ability to predict duration of response, and likelihood of cancer relapse. Biomarkers, such as leukemic stem cell biomarkers, circulatory biomarkers, measurable residual disease biomarkers, and molecular biomarkers, are used for prognosis, diagnosis, and targeted killing to selectively eliminate AML cells. They also play an indispensable role in providing therapeutic resistance to patients with AML. Therefore, targeting these biomarkers will improve the outcome of AML patients. However, identifying biomarkers that can differentiate between treatment-responsive and non-responsive AML patients remains a challenge. This review discusses recent advancements in AML biomarkers, promising therapeutics, and associated challenges in the treatment of AML.
Collapse
Affiliation(s)
- Suresh Kumar Prajapati
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Neha Kumari
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Doulat Bhowmik
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Reeshu Gupta
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India.
| |
Collapse
|
3
|
Travaglini S, Gurnari C, Ottone T, Voso MT. Advances in the pathogenesis of FLT3 -mutated acute myeloid leukemia and targeted treatments. Curr Opin Oncol 2024; 36:569-576. [PMID: 39246183 PMCID: PMC11460763 DOI: 10.1097/cco.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW FLT3 mutations are among the most common myeloid drivers identified in adult acute myeloid leukemia (AML). Their identification is crucial for the precise risk assessment because of the strong prognostic significance of the most recurrent type of FLT3 alterations, namely internal tandem duplications (ITDs). Recent advances in the pathogenesis and biology of FLT3 -mutated AML have opened an opportunity for development and application of selective inhibition of FLT3 pathway. RECENT FINDINGS In the last decade, at least three targeted treatments have been approved by regulatory agencies and several others are currently under investigations. Here, we review the latest advance in the role of FLT3 mutations in AML, providing an outline of the available therapeutic strategies, their mechanisms of actions and of resistance, as well as routes for potential improvement. SUMMARY The availability of FLT3 inhibitors has improved outcomes in AML harboring such mutations, currently also reflected in disease stratification and recommendations. Newer inhibitors are under investigations, and combinations with chemotherapy or other targeted treatments are being explored to further improve disease outcomes.
Collapse
Affiliation(s)
- Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Tor Vergata
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata
| | | |
Collapse
|
4
|
Asfa SS, Arshinchi Bonab R, Önder O, Uça Apaydın M, Döşeme H, Küçük C, Georgakilas AG, Stadler BM, Logotheti S, Kale S, Pavlopoulou A. Computer-Aided Identification and Design of Ligands for Multi-Targeting Inhibition of a Molecular Acute Myeloid Leukemia Network. Cancers (Basel) 2024; 16:3607. [PMID: 39518047 PMCID: PMC11544916 DOI: 10.3390/cancers16213607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is characterized by therapeutic failure and long-term risk for disease relapses. As several therapeutic targets participate in networks, they can rewire to eventually evade single-target drugs. Hence, multi-targeting approaches are considered on the expectation that interference with many different components could synergistically hinder activation of alternative pathways and demolish the network one-off, leading to complete disease remission. METHODS Herein, we established a network-based, computer-aided approach for the rational design of drug combinations and de novo agents that interact with many AML network components simultaneously. RESULTS A reconstructed AML network guided the selection of suitable protein hubs and corresponding multi-targeting strategies. For proteins responsive to existing drugs, a greedy algorithm identified the minimum amount of compounds targeting the maximum number of hubs. We predicted permissible combinations of amiodarone, artenimol, fostamatinib, ponatinib, procaine, and vismodegib that interfere with 3-8 hubs, and we elucidated the pharmacological mode of action of procaine on DNMT3A. For proteins that do not respond to any approved drugs, namely cyclins A1, D2, and E1, we used structure-based de novo drug design to generate a novel triple-targeting compound of the chemical formula C15H15NO5, with favorable pharmacological and drug-like properties. CONCLUSIONS Overall, by integrating network and structural pharmacology with molecular modeling, we determined two complementary strategies with the potential to annihilate the AML network, one in the form of repurposable drug combinations and the other as a de novo synthesized triple-targeting agent. These target-drug interactions could be prioritized for preclinical and clinical testing toward precision medicine for AML.
Collapse
Affiliation(s)
- Seyedeh Sadaf Asfa
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R3E 0W2, Canada
| | - Reza Arshinchi Bonab
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R3E 0W2, Canada
| | - Onur Önder
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Merve Uça Apaydın
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Hatice Döşeme
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Can Küçük
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, 35330 Balçova, İzmir, Türkiye;
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece;
| | - Bernhard M. Stadler
- Technische Hochschule Nürnberg, Faculty of Applied Chemistry, 90489 Nuremberg, Germany;
| | - Stella Logotheti
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Department of Biophysics, Faculty of Medicine, Izmir Katip Çelebi University, 35330 Çiğli, İzmir, Türkiye
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| |
Collapse
|
5
|
Yang H, Gao J, Zheng Z, Yu Y, Zhang C. Current insights and future directions of LncRNA Morrbid in disease pathogenesis. Heliyon 2024; 10:e36681. [PMID: 39263145 PMCID: PMC11388785 DOI: 10.1016/j.heliyon.2024.e36681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Non-coding RNAs have emerged as important regulators of gene expression and contributors to many diseases. LncRNA Morrbid, a long non-coding RNA, has been widely studied in recent years. Current literature reports that lncRNA Morrbid is involved in various diseases such as tumors, cardiovascular diseases, inflammatory diseases and metabolic disorder. However, controversial conclusions exist in current studies. As a potential therapeutic target, it is necessary to comprehensively review the current evidence. In this work, we carefully review the literature on Morrbid and discuss each of the hot topics related to lncRNA Morrbid.
Collapse
Affiliation(s)
- Haiqiong Yang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiali Gao
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of pharmacy, Luzhou people's hospital, Luzhou, China
| | - Zaiyong Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Lica JJ, Pradhan B, Safi K, Jakóbkiewicz-Banecka J, Hellmann A. Promising Therapeutic Strategies for Hematologic Malignancies: Innovations and Potential. Molecules 2024; 29:4280. [PMID: 39275127 PMCID: PMC11397263 DOI: 10.3390/molecules29174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
In this review we explore innovative approaches in the treatment of hematologic cancers by combining various therapeutic modalities. We discuss the synergistic potential of combining inhibitors targeting different cellular pathways with immunotherapies, molecular therapies, and hormonal therapies. Examples include combining PI3K inhibitors with proteasome inhibitors, NF-κB inhibitors with immunotherapy checkpoint inhibitors, and neddylation inhibitors with therapies targeting the tumor microenvironment. Additionally, we discuss the potential use of small molecules and peptide inhibitors in hematologic cancer treatment. These multidimensional therapeutic combinations present promising strategies for enhancing treatment efficacy and overcoming resistance mechanisms. However, further clinical research is required to validate their effectiveness and safety profiles in hematologic cancer patients.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Faculty of Health Science, Powiśle University, 80-214 Gdańsk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kawthar Safi
- Department of Biochemistry and Clinical Chemistry, Faculty of Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|
7
|
Wang P, Zhang Y, Xiang R, Yang J, Xu Y, Deng T, Zhou W, Wang C, Xiao X, Wang S. Foretinib Is Effective in Acute Myeloid Leukemia by Inhibiting FLT3 and Overcoming Secondary Mutations That Drive Resistance to Quizartinib and Gilteritinib. Cancer Res 2024; 84:905-918. [PMID: 38231480 PMCID: PMC10940854 DOI: 10.1158/0008-5472.can-23-1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
FLT3 internal tandem duplication (FLT3-ITD) mutations are one of the most prevalent somatic alterations associated with poor prognosis in patients with acute myeloid leukemia (AML). The clinically approved FLT3 kinase inhibitors gilteritinib and quizartinib improve the survival of patients with AML with FLT3-ITD mutations, but their long-term efficacy is limited by acquisition of secondary drug-resistant mutations. In this study, we conducted virtual screening of a library of 60,411 small molecules and identified foretinib as a potent FLT3 inhibitor. An integrated analysis of the BeatAML database showed that foretinib had a lower IC50 value than other existing FLT3 inhibitors in patients with FLT3-ITD AML. Foretinib directly bound to FLT3 and effectively inhibited FLT3 signaling. Foretinib potently inhibited proliferation and promoted apoptosis in human AML cell lines and primary AML cells with FLT3-ITD mutations. Foretinib also significantly extended the survival of mice bearing cell-derived and patient-derived FLT3-ITD xenografts, exhibiting stronger efficacy than clinically approved FLT3 inhibitors in treating FLT3-ITD AML. Moreover, foretinib showed potent activity against secondary mutations of FLT3-ITD that confer resistance to quizartinib and gilteritinib. These findings support the potential of foretinib for treating patients with AML with FLT3-ITD mutations, especially for those carrying secondary mutations after treatment failure with other FLT3 inhibitors. SIGNIFICANCE Foretinib exhibits superior efficacy to approved drugs in AML with FLT3-ITD mutations and retains activity in AML with secondary FLT3 mutations that mediate resistance to clinical FLT3 inhibitors.
Collapse
Affiliation(s)
- Peihong Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yvyin Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Rufang Xiang
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jie Yang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yanli Xu
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Xinhua Xiao
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P.R. China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| |
Collapse
|