1
|
Park R, Chung CH. Advanced Human Papillomavirus-Negative Head and Neck Squamous Cell Carcinoma: Unmet Need and Emerging Therapies. Mol Cancer Ther 2024; 23:1717-1730. [PMID: 39301607 PMCID: PMC11612620 DOI: 10.1158/1535-7163.mct-24-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Despite notable progress in the treatment of advanced head and neck squamous cell carcinoma (HNSCC), survival remains poor in patients with recurrent and/or metastatic (R/M) human papillomavirus (HPV)-negative HNSCC. Worse outcomes in patients who are HPV-negative may be partly related to loss of cell-cycle regulators and tumor suppressors as well as a noninflamed and hypoxic tumor microenvironment, both of which contribute to treatment resistance and disease progression. Anti-programmed cell death protein 1-based regimens as current standard-of-care treatment for R/M HNSCC are associated with durable responses in a limited number of patients. The anti-EGFR mAb, cetuximab, has antitumor activity in this treatment setting, but responses are short-lived and inevitably curtailed due to treatment resistance. Crosstalk between the EGFR and hepatocyte growth factor-dependent mesenchymal-epithelial transition (c-MET) receptor tyrosine kinase pathway is a known mechanism of resistance to cetuximab. Dual targeting of EGFR and c-MET pathways may overcome resistance to cetuximab in patients with HPV-negative HNSCC. Here, we review clinical data of treatments evaluated in patients with R/M HPV-negative HNSCC and highlight the potential role of combining hepatocyte growth factor/c-MET and EGFR pathway inhibitors to overcome cetuximab resistance in this population.
Collapse
Affiliation(s)
- Robin Park
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
2
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
3
|
Chen X, Li M, Li Y, Aiolfi A, Bonavina L, Lerut T, Wu X, Zhang Q. Combining non-invasive liquid biopsy and a methylation analysis to assess surgical risk for early esophageal cancer. Transl Cancer Res 2024; 13:3075-3089. [PMID: 38988931 PMCID: PMC11231771 DOI: 10.21037/tcr-24-314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024]
Abstract
Background While the widespread use of endoscopic submucosal dissection (ESD) has significantly reduced the incidence of early esophageal cancer (ESCA), the limited ability of ESD to strip deep infiltrating esophageal lesions results in a considerable risk of intraoperative perforation. Circulating-free DNA (cfDNA) is widely used in modern tumor screening due to its non-invasive detection capabilities. A methylation analysis offers vital insights into the condition and advancement of malignancies due to its unique positioning, such as a marker of cancer. This study investigated the potential of combining a non-invasive liquid biopsy technique, along with a methylation analysis, to assess the surgical perforation risk of ESCA patients. Methods In this study, we conducted an analysis of gene expression differences between stage I esophageal squamous carcinoma samples and healthy tissue samples using data from The Cancer Genome Atlas (TCGA) database. We also identified the genes associated with progression-free survival (PFS) in esophageal squamous carcinoma. Integrating the framework of the methylation analysis, we explored the methylated sites of these distinct genes. To refine this process, we used the Shiny Methylation Analysis Resource Tool (SMART) to conduct a comprehensive analysis of these sites. We then confirmed the stability of the methylation sites in different lesion conditions using methylation-specific quantitative polymerase chain reaction (MS-qPCR) with paraffin tissue samples collected after ESD. Results We analyzed RNA-sequencing data from 42 early stage ESCA patients and 17 controls, identifying 1,263 up-regulated and 460 down-regulated genes. Functional analyses revealed involvement in key pathways such as cell cycle regulation and immune responses. Furthermore, we identified 38 differentially expressed genes associated with PFS. Using SMART analysis, we found 217 hyper-methylated regions in 38 genes, suggesting potential early markers for ESCA. Validation experiments confirmed the reliability of 29 hyper-methylated regions in FFPE tissue samples and 6 regions in cfDNA. A LunaCAM model showed high accuracy [area under the curve (AUC) =0.89] in discriminating early ESCA. Integrated assessment of six highly methylated regions significantly improved predictive performance, with 90.56% sensitivity, highlighting the importance of combinatorial biomarker evaluation for early cancer detection. Conclusions This study established a novel approach that integrates non-invasive testing with a methylation analysis to assess the surgical risk of early ESCA patients. The significance of changes in methylation sites in relation to lesion status should not be underestimated, as they have the potential to offer vital insights for proactive risk assessments before surgery.
Collapse
Affiliation(s)
- Xiaole Chen
- Department of Hepatobiliary Spleen and Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Mingyan Li
- Department of Hepatobiliary Spleen and Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Yongliang Li
- Department of Hepatobiliary Spleen and Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Alberto Aiolfi
- Division of General Surgery, Department of Biomedical Sciences for Health, IRCCS Ospedale Galeazzi-Sant'Ambrogio, University of Milan, Milan, Italy
| | - Luigi Bonavina
- Division of General and Foregut Surgery, Department of Biomedical Sciences for Health, University of Milan Medical School, IRCCS Policlinico San Donato, Milan, Italy
| | - Toni Lerut
- Surgery KULeuven, Department of Thoracic Surgery, University Hospital Gasthuisberg, Leuven, Belgium
| | - Xiuxia Wu
- Department of Hepatobiliary Spleen and Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Qinsheng Zhang
- Department of Hepatobiliary Spleen and Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Nakashoji A, Haratake N, Bhattacharya A, Mao W, Xu K, Wang K, Daimon T, Ozawa H, Shigeta K, Fushimi A, Yamashita N, Morimoto Y, Shimokawa M, Saito S, Egloff AM, Uppaluri R, Long MD, Kufe D. Identification of MUC1-C as a Target for Suppressing Progression of Head and Neck Squamous Cell Carcinomas. CANCER RESEARCH COMMUNICATIONS 2024; 4:1268-1281. [PMID: 38619287 PMCID: PMC11092937 DOI: 10.1158/2767-9764.crc-24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
The MUC1-C protein is aberrantly expressed in adenocarcinomas of epithelial barrier tissues and contributes to their progression. Less is known about involvement of MUC1-C in the pathogenesis of squamous cell carcinomas (SCC). Here, we report that the MUC1 gene is upregulated in advanced head and neck SCCs (HNSCC). Studies of HNSCC cell lines demonstrate that the MUC1-C subunit regulates expression of (i) RIG-I and MDA5 pattern recognition receptors, (ii) STAT1 and IFN regulatory factors, and (iii) downstream IFN-stimulated genes. MUC1-C integrates chronic activation of the STAT1 inflammatory pathway with induction of the ∆Np63 and SOX2 genes that are aberrantly expressed in HNSCCs. In extending those dependencies, we demonstrate that MUC1-C is necessary for NOTCH3 expression, self-renewal capacity, and tumorigenicity. The findings that MUC1 associates with ∆Np63, SOX2 and NOTCH3 expression by single-cell RNA sequencing analysis further indicate that MUC1-C drives the HNSCC stem cell state and is a target for suppressing HNSCC progression. SIGNIFICANCE This work reports a previously unrecognized role for MUC1-C in driving STAT1-mediated chronic inflammation with the progression of HNSCC and identifies MUC1-C as a druggable target for advanced HNSCC treatment.
Collapse
Affiliation(s)
- Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Weipu Mao
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kangjie Xu
- Central Laboratory Department, Binhai County People's Hospital, Yancheng, P.R. China
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shin Saito
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ann Marie Egloff
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ravindra Uppaluri
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Jumaniyazova E, Aghajanyan A, Kurevlev S, Tskhovrebova L, Makarov A, Gordon K, Lokhonina A, Fatkhudinov T. SP1 Gene Methylation in Head and Neck Squamous Cell Cancer in HPV-Negative Patients. Genes (Basel) 2024; 15:281. [PMID: 38540340 PMCID: PMC10970621 DOI: 10.3390/genes15030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
There is still much to learn about the epigenetic mechanisms controlling gene expression during carcinogenesis. When researching aberrant DNA methylation, active proliferative tumor cells from head and neck squamous cell cancer (HNSCC) can be used as a model. The aim of the study was to investigate the methylation status of CDKN1, CDKN2A, MYC, Smad3, SP1, and UBC genes in tumor tissue (control-normal tissue) in 50 patients (37 men and 13 women) with HPV-negative HNSCC. Methods: Bisulfite conversion methods and methyl-sensitive analysis of high-resolution melting curves were used to quantify the methylation of genes. In all patients and across various subgroups (tongue carcinoma, laryngeal and other types of carcinomas T2, T3, T4 status; age before and after 50 years; smoking and non-smoking), there are consistent differences in the methylation levels in the SP1 gene in tumor DNA compared to normal. Results: The methylation of the SP1 gene in tumor DNA suppresses its expression, hinders HNSCC cell proliferation regulation, and could be a molecular indicator of malignant cell growth. The study of DNA methylation of various genes involved in carcinogenesis is promising because hypermethylated promoters can serve as potential biomarkers of disease.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anna Aghajanyan
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Sergey Kurevlev
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Leyla Tskhovrebova
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Andrey Makarov
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia
| | - Konstantin Gordon
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia
| | - Anastasiya Lokhonina
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Timur Fatkhudinov
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|