1
|
Gil-Rojas S, Suárez M, Martínez-Blanco P, Torres AM, Martínez-García N, Blasco P, Torralba M, Mateo J. Application of Machine Learning Techniques to Assess Alpha-Fetoprotein at Diagnosis of Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:1996. [PMID: 38396674 PMCID: PMC10888351 DOI: 10.3390/ijms25041996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor and is associated with high mortality rates. Approximately 80% of cases occur in cirrhotic livers, posing a significant challenge for appropriate therapeutic management. Adequate screening programs in high-risk groups are essential for early-stage detection. The extent of extrahepatic tumor spread and hepatic functional reserve are recognized as two of the most influential prognostic factors. In this retrospective multicenter study, we utilized machine learning (ML) methods to analyze predictors of mortality at the time of diagnosis in a total of 208 patients. The eXtreme gradient boosting (XGB) method achieved the highest values in identifying key prognostic factors for HCC at diagnosis. The etiology of HCC was found to be the variable most strongly associated with a poorer prognosis. The widely used Barcelona Clinic Liver Cancer (BCLC) classification in our setting demonstrated superiority over the TNM classification. Although alpha-fetoprotein (AFP) remains the most commonly used biological marker, elevated levels did not correlate with reduced survival. Our findings suggest the need to explore new prognostic biomarkers for individualized management of these patients.
Collapse
Affiliation(s)
- Sergio Gil-Rojas
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Miguel Suárez
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Pablo Martínez-Blanco
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Ana M. Torres
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | | | - Pilar Blasco
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Miguel Torralba
- Internal Medicine Unit, University Hospital of Guadalajara, 19002 Guadalajara, Spain
- Faculty of Medicine, Universidad de Alcalá de Henares, 28801 Alcalá de Henares, Spain
- Translational Research Group in Cellular Immunology (GITIC), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|