1
|
Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci Rep 2021; 40:222411. [PMID: 32186721 PMCID: PMC7109002 DOI: 10.1042/bsr20193006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose: Autophagic dysfunction and abnormal oxidative stress are associated with cataract. The purpose of the present study was to investigate the changes of cellular autophagy and oxidative stress and their association in lens epithelial cells (LECs) upon exposure to high glucose. Methods: Autophagy and oxidative stress-related changes were detected in streptozotocin-induced Type 1 diabetic mice and normal mouse LECs incubated in high glucose conditions. Rapamycin at a concentration of 100 nm/l or 50 μM chloroquine was combined for analysis of the relationship between autophagy and oxidative stress. The morphology of LECs during autophagy was observed by transmission electron microscopy. The expressions of autophagy markers (LC3B and p62) were identified, as well as the key factors of oxidative stress (SOD2 and CAT) and mitochondrial reactive oxygen species (ROS) generation. Results: Transmission electron microscopy indicated an altered autophagy activity in diabetic mouse lens tissues with larger autophagosomes and multiple mitochondria. Regarding the expressions, LC3B was elevated, p62 was decreased first and then increased, and SOD2 and CAT were increased before a decrease during 4 months of follow-up in diabetic mice and 72 h of culture under high glucose for mouse LECs. Furthermore, rapamycin promoted the expressions of autophagy markers but alleviated those of oxidative stress markers, whereas chloroquine antagonized autophagy but enhanced oxidative stress by elevating ROS generation in LECs exposed to high glucose. Conclusions: The changes in autophagy and oxidative stress were fluctuating in the mouse LECs under constant high glucose conditions. Autophagy might attenuate high glucose-induced oxidative injury to LECs.
Collapse
|
2
|
Yin Y, Zong R, Bao X, Zheng X, Cui H, Liu Z, Zhou Y. Oxidative Stress Suppresses Cellular Autophagy in Corneal Epithelium. ACTA ACUST UNITED AC 2018; 59:3286-3293. [DOI: 10.1167/iovs.18-24057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yuanyuan Yin
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Rongrong Zong
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Xiaorui Bao
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Xiling Zheng
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Department of Ophthalmology, The Affiliated Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Huixia Cui
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Department of Ophthalmology, The Affiliated Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Yueping Zhou
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| |
Collapse
|
3
|
Chang I, Wang CY. Inhibition of HDAC6 Protein Enhances Bortezomib-induced Apoptosis in Head and Neck Squamous Cell Carcinoma (HNSCC) by Reducing Autophagy. J Biol Chem 2016; 291:18199-209. [PMID: 27369083 DOI: 10.1074/jbc.m116.717793] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
Chemoresistance is a major barrier to effective chemotherapy of solid tumors, including head and neck squamous cell carcinoma (HNSCC). Recently, autophagy, a highly conservative intracellular recycling system, has shown to be associated with chemoresistance in cancer cells. However, little is known about how autophagy plays a role in the development of chemoresistance in HNSCC and how autophagy is initiated when HNSCC cells undergo cytotoxic stress. Here, we report that autophagy was activated when HNSCC cells are treated with the proteasome inhibitor bortezomib, proposed as an alternative chemotherapeutic agent for both primary and cisplatin-resistant HNSCC cells. Ablation of histone deacetylase 6 (HDAC6) expression and its activity in HNSCC cells significantly inhibited autophagy induction by altering the phosphorylation status of mammalian target of rapamycin and enhanced the bortezomib cytotoxicity. Similarly, a combination regimen of bortezomib and the histone deacetylase inhibitor trichostatin A abolished HDAC6 activity and decreased autophagy induction while significantly enhancing bortezomib-induced apoptosis in HNSCC cells. These data uncover a novel molecular mechanism indicating that HDAC6 may serve as a critical causal link between autophagy, apoptosis, and the cell survival response in HNSCC. A combination regimen resulting in regression of autophagy improves chemotherapeutic efficacy, thereby providing a new strategy to overcome chemoresistance and to improve the treatment and survival of HNSCC patients.
Collapse
Affiliation(s)
- Insoon Chang
- From the Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095
| | - Cun-Yu Wang
- From the Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095
| |
Collapse
|
4
|
Singh A, Patel VK, Jain DK, Patel P, Rajak H. Panobinostat as Pan-deacetylase Inhibitor for the Treatment of Pancreatic Cancer: Recent Progress and Future Prospects. Oncol Ther 2016; 4:73-89. [PMID: 28261641 PMCID: PMC5315073 DOI: 10.1007/s40487-016-0023-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The histone deacetylase (HDAC) inhibitors have been demonstrated as an emerging class of anticancer drugs. HDACs are involved in regulation of gene expression and in chromatin remodeling, thus indicating valid targets for different types of cancer therapeutics. The pan-deacetylase inhibitor panobinostat (Farydac®, LBH589) was developed by Novartis Pharmaceuticals and has been recently approved by the US Food and Drug Administraion (FDA) as a drug to treat multiple myeloma. It is under clinical investigation for a range of haematological and solid tumors worldwide in both oral and intravenous formulations. Panobinostat inhibits tumor cell growth by interacting with acetylation of histones and non-histone proteins as well as various apoptotic, autophagy-mediated targets and various tumorogenesis pathways involved in development of tumors. The optimal combination regimen for pancreatic cancer remains to be fully elucidated with various combination regimens, and should be investigated in clinical trials. This article summarizes the current preclinical and clinical status of panobinostat in pancreatic cancer. Preclinical data suggests that panobinostat has potential inhibitory activity in pancreatic cancer cells by targeting various pathways and factors involved in the development of cancer. Herein, we reviewed the status of mono and combination therapy and the rationale behind the combination therapy undergoing trials, as well as possible future prospective use in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Avineesh Singh
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Vijay K. Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Deepak K. Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Preeti Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Harish Rajak
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| |
Collapse
|
5
|
Donohue E, Thomas A, Maurer N, Manisali I, Zeisser-Labouebe M, Zisman N, Anderson HJ, Ng SSW, Webb M, Bally M, Roberge M. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J Cancer 2013; 4:585-96. [PMID: 24069069 PMCID: PMC3781989 DOI: 10.7150/jca.7030] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/17/2013] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to chemotherapy. It has been described as requiring elevated autophagy for growth and inhibiting autophagy has been proposed as a treatment strategy. To date, all preclinical reports and clinical trials investigating pharmacological inhibition of autophagy have used chloroquine or hydroxychloroquine, which interfere with lysosomal function and block autophagy at a late stage. Verteporfin is a newly discovered autophagy inhibitor that blocks autophagy at an early stage by inhibiting autophagosome formation. Here we report that PDAC cell lines show variable sensitivity to verteporfin in vitro, suggesting cell-line specific autophagy dependence. Using image-based and molecular analyses, we show that verteporfin inhibits autophagy stimulated by gemcitabine, the current standard treatment for PDAC. Pharmacokinetic and efficacy studies in a BxPC-3 xenograft mouse model demonstrated that verteporfin accumulated in tumors at autophagy-inhibiting levels and inhibited autophagy in vivo, but did not reduce tumor volume or increase survival as a single agent. In combination with gemcitabine verteporfin moderately reduced tumor growth and enhanced survival compared to gemcitabine alone. While our results do not uphold the premise that autophagy inhibition might be widely effective against PDAC as a single-modality treatment, they do support autophagy inhibition as an approach to sensitize PDAC to gemcitabine.
Collapse
Affiliation(s)
- Elizabeth Donohue
- 1. Department of Biochemistry and Molecular Biology, University of British Columbia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Novel Insights into the Interplay between Apoptosis and Autophagy. Int J Cell Biol 2012; 2012:317645. [PMID: 22496691 PMCID: PMC3312193 DOI: 10.1155/2012/317645] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/31/2011] [Indexed: 12/19/2022] Open
Abstract
For several decades, apoptosis has taken center stage as the principal mechanism of programmed cell death (type I cell death) in mammalian tissues. Autophagic cell death (type II) is characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells. The autophagic process is activated as an adaptive response to a variety of extracellular and intracellular stresses, including nutrient deprivation, hormonal or therapeutic treatment, pathogenic infection, aggregated and misfolded proteins, and damaged organelles. Increasing evidence indicates that autophagy is associated with a number of pathological processes, including cancer. The regulation of autophagy in cancer cells is complex since it can enhance cancer cell survival in response to certain stresses, while it can also act to suppress the initiation of cancer growth. This paper focused on recent advances regarding autophagy in cancer and the techniques currently available to manipulate autophagy.
Collapse
|