1
|
Nakayama A, Roquid KA, Iring A, Strilic B, Günther S, Chen M, Weinstein LS, Offermanns S. Suppression of CCL2 angiocrine function by adrenomedullin promotes tumor growth. J Exp Med 2022; 220:213682. [PMID: 36374225 PMCID: PMC9665902 DOI: 10.1084/jem.20211628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Within the tumor microenvironment, tumor cells and endothelial cells regulate each other. While tumor cells induce angiogenic responses in endothelial cells, endothelial cells release angiocrine factors, which act on tumor cells and other stromal cells. We report that tumor cell-derived adrenomedullin has a pro-angiogenic as well as a direct tumor-promoting effect, and that endothelium-derived CC chemokine ligand 2 (CCL2) suppresses adrenomedullin-induced tumor cell proliferation. Loss of the endothelial adrenomedullin receptor CALCRL or of the G-protein Gs reduced endothelial proliferation. Surprisingly, tumor cell proliferation was also reduced after endothelial deletion of CALCRL or Gs. We identified CCL2 as a critical angiocrine factor whose formation is inhibited by adrenomedullin. Furthermore, CCL2 inhibited adrenomedullin formation in tumor cells through its receptor CCR2. Consistently, loss of endothelial CCL2 or tumor cell CCR2 normalized the reduced tumor growth seen in mice lacking endothelial CALCRL or Gs. Our findings show tumor-promoting roles of adrenomedullin and identify CCL2 as an angiocrine factor controlling adrenomedullin formation by tumor cells.
Collapse
Affiliation(s)
- Akiko Nakayama
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Correspondence to Akiko Nakayama:
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - András Iring
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Min Chen
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA
| | - Lee S. Weinstein
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany,Cardiopulmonary Institute, Bad Nauheim, Germany,German Center for Cardiovascular Research, Bad Nauheim, Germany,Stefan Offermanns:
| |
Collapse
|
2
|
Rudhira/BCAS3 is essential for mouse development and cardiovascular patterning. Sci Rep 2018; 8:5632. [PMID: 29618843 PMCID: PMC5884795 DOI: 10.1038/s41598-018-24014-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/22/2018] [Indexed: 01/23/2023] Open
Abstract
Rudhira/Breast Carcinoma Amplified Sequence 3 (BCAS3) is a cytoskeletal protein that promotes directional cell migration and angiogenesis in vitro and is implicated in human carcinomas and coronary artery disease. To study the role of Rudhira during development in vivo, we generated the first knockout mouse for rudhira and show that Rudhira is essential for mouse development. Rudhira null embryos die at embryonic day (E) 9.5 accompanied by severe vascular patterning defects in embryonic and extra-embryonic tissues. To identify the molecular processes downstream of rudhira, we analyzed the transcriptome of intact knockout yolk sacs. Genome-wide transcriptome analysis showed that Rudhira functions in angiogenesis and its related processes such as cell adhesion, extracellular matrix organization, peptidase activity and TGFβ signaling. Since Rudhira is also expressed in endothelial cells (ECs), we further generated Tie2Cre-mediated endothelial knockout (CKO) of rudhira. CKO embryos survive to E11.5 and similar to the global knockout, display gross vascular patterning defects, showing that endothelial Rudhira is vital for development. Further, Rudhira knockdown ECs in culture fail to sprout in a spheroid-sprouting assay, strongly supporting its role in vascular patterning. Our study identifies an essential role for Rudhira in blood vessel remodeling and provides a mouse model for cardiovascular development.
Collapse
|
3
|
Hammoud L, Adams JR, Loch AJ, Marcellus RC, Uehling DE, Aman A, Fladd C, McKee TD, Jo CEB, Al-Awar R, Egan SE, Rossant J. Identification of RSK and TTK as Modulators of Blood Vessel Morphogenesis Using an Embryonic Stem Cell-Based Vascular Differentiation Assay. Stem Cell Reports 2016; 7:787-801. [PMID: 27618721 PMCID: PMC5063585 DOI: 10.1016/j.stemcr.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/05/2022] Open
Abstract
Blood vessels are formed through vasculogenesis, followed by remodeling of the endothelial network through angiogenesis. Many events that occur during embryonic vascular development are recapitulated during adult neoangiogenesis, which is critical to tumor growth and metastasis. Current antiangiogenic tumor therapies, based largely on targeting the vascular endothelial growth factor pathway, show limited clinical benefits, thus necessitating the discovery of alternative targets. Here we report the development of a robust embryonic stem cell-based vascular differentiation assay amenable to small-molecule screens to identify novel modulators of angiogenesis. In this context, RSK and TTK were identified as angiogenic modulators. Inhibition of these pathways inhibited angiogenesis in embryoid bodies and human umbilical vein endothelial cells. Furthermore, inhibition of RSK and TTK reduced tumor growth, vascular density, and improved survival in an in vivo Lewis lung carcinoma mouse model. Our study suggests that RSK and TTK are potential targets for antiangiogenic therapy, and provides an assay system for further pathway screens. Development of ESC-based vascular differentiation assay amenable to drug screening Screening a kinase library identified RSK and TTK as angiogenic modulators RSK and TTK inhibition disrupted angiogenesis in vitro RSK and TTK inhibition inhibited Lewis lung tumor growth and angiogenesis in vivo
Collapse
Affiliation(s)
- Lamis Hammoud
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Jessica R Adams
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Amanda J Loch
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Richard C Marcellus
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - David E Uehling
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Ahmed Aman
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Christopher Fladd
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Trevor D McKee
- Radiation Medicine Program, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Christine E B Jo
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Rima Al-Awar
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
Gu Q, Wang C, Wang G, Han Z, Li Y, Wang X, Li J, Qi C, Xu T, Yang X, Wang L. Glipizide suppresses embryonic vasculogenesis and angiogenesis through targeting natriuretic peptide receptor A. Exp Cell Res 2015; 333:261-272. [PMID: 25823921 DOI: 10.1016/j.yexcr.2015.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/17/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Glipizide, a second-generation sulfonylurea, has been widely used for the treatment of type 2 diabetes. However, it is controversial whether or not glipizide would affect angiogenesis or vasculogenesis. In the present study, we used early chick embryo model to investigate the effect of glipizide on angiogenesis and vasculogenesis, which are the two major processes for embryonic vasculature formation as well as tumor neovascularization. We found that Glipizide suppressed both angiogenesis in yolk-sac membrane (YSM) and blood island formation during developmental vasculogenesis. Glipizide did not affect either the process of epithelial to mesenchymal transition (EMT) or mesoderm cell migration. In addition, it did not interfere with separation of smooth muscle cell progenitors from hemangioblasts. Moreover, natriuretic peptide receptor A (NPRA) has been identified as the putative target for glipizide׳s inhibitory effect on vasculogenesis. When NPRA was overexpressed or activated, blood island formation was reduced. NPRA signaling may play a crucial role in the effect of glipizide on vasculogenesis during early embryonic development.
Collapse
Affiliation(s)
- Quliang Gu
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Basic Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zhe Han
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiaoyu Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Jiangchao Li
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiling Qi
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tao Xu
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 510632, China.
| | - Lijing Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|