1
|
Harutyunyan T, Sargsyan A, Kalashyan L, Igityan H, Grigoryan B, Davtyan H, Aroutiounian R, Liehr T, Hovhannisyan G. Changes in Telomere Length in Leukocytes and Leukemic Cells after Ultrashort Electron Beam Radiation. Int J Mol Sci 2024; 25:6709. [PMID: 38928414 PMCID: PMC11203595 DOI: 10.3390/ijms25126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.
Collapse
Affiliation(s)
- Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Anzhela Sargsyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Lily Kalashyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
| | - Hovhannes Igityan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
| | - Bagrat Grigoryan
- CANDLE Synchrotron Research Institute, Acharyan 31, Yerevan 0040, Armenia; (B.G.); (H.D.)
| | - Hakob Davtyan
- CANDLE Synchrotron Research Institute, Acharyan 31, Yerevan 0040, Armenia; (B.G.); (H.D.)
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany
| | - Galina Hovhannisyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| |
Collapse
|
2
|
Roka K, Solomou EE, Kattamis A. Telomere biology: from disorders to hematological diseases. Front Oncol 2023; 13:1167848. [PMID: 37274248 PMCID: PMC10235513 DOI: 10.3389/fonc.2023.1167848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Variations in the length of telomeres and pathogenic variants involved in telomere length maintenance have been correlated with several human diseases. Recent breakthroughs in telomere biology knowledge have contributed to the identification of illnesses named "telomeropathies" and revealed an association between telomere length and disease outcome. This review emphasizes the biology and physiology aspects of telomeres and describes prototype diseases in which telomeres are implicated in their pathophysiology. We also provide information on the role of telomeres in hematological diseases ranging from bone marrow failure syndromes to acute and chronic leukemias.
Collapse
Affiliation(s)
- Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National & Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Full Member of ERN GENTURIS, Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National & Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Full Member of ERN GENTURIS, Athens, Greece
| |
Collapse
|
3
|
Deregowska A, Lewinska A, Warzybok A, Stoklosa T, Wnuk M. Telomere loss is accompanied by decreased pool of shelterin proteins TRF2 and RAP1, elevated levels of TERRA and enhanced glycolysis in imatinib-resistant CML cells. Toxicol In Vitro 2023; 90:105608. [PMID: 37149272 DOI: 10.1016/j.tiv.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Telomere length may be maintained by telomerase nucleoprotein complex and shelterin complex, namely TRF1, TRF2, TIN2, TPP1, POT1 and RAP1 proteins and modulated by TERRA expression. Telomere loss is observed during progression of chronic myeloid leukemia (CML) from the chronic phase (CML-CP) to the blastic phase (CML-BP). The introduction of tyrosine kinase inhibitors (TKIs), such as imatinib (IM), has changed outcome for majority of patients, however, a number of patients treated with TKIs may develop drug resistance. The molecular mechanisms underlying this phenomenon are not fully understood and require further investigation. In the present study, we demonstrate that IM-resistant BCR::ABL1 gene-positive CML K-562 and MEG-A2 cells are characterized by decreased telomere length, lowered protein levels of TRF2 and RAP1 and increased expression of TERRA in comparison to corresponding IM-sensitive CML cells and BCR::ABL1 gene-negative HL-60 cells. Furthermore, enhanced activity of glycolytic pathway was observed in IM-resistant CML cells. A negative correlation between a telomere length and advanced glycation end products (AGE) was also revealed in CD34+ cells isolated from CML patients. In conclusion, we suggest that affected expression of shelterin complex proteins, namely TRF2 and RAP1, TERRA levels, and glucose consumption rate may promote telomere dysfunction in IM-resistant CML cells.
Collapse
Affiliation(s)
- Anna Deregowska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland; Department of Tumor Biology and Genetics, Medical University of Warsaw, Pawinskiego 7, Warsaw 02-106, Poland.
| | - Anna Lewinska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland.
| | - Aleksandra Warzybok
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Tomasz Stoklosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Pawinskiego 7, Warsaw 02-106, Poland.
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland.
| |
Collapse
|
4
|
Differential Regulation of Telomeric Complex by BCR-ABL1 Kinase in Human Cellular Models of Chronic Myeloid Leukemia-From Single Cell Analysis to Next-Generation Sequencing. Genes (Basel) 2020; 11:genes11101145. [PMID: 33003326 PMCID: PMC7601685 DOI: 10.3390/genes11101145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Telomeres are specialized nucleoprotein complexes, localized at the physical ends of chromosomes, that contribute to the maintenance of genome stability. One of the features of chronic myeloid leukemia (CML) cells is a reduction in telomere length which may result in increased genomic instability and progression of the disease. Aberrant telomere maintenance in CML is not fully understood and other mechanisms such as the alternative lengthening of telomeres (ALT) are involved. In this work, we employed five BCR-ABL1-positive cell lines, namely K562, KU-812, LAMA-84, MEG-A2, and MOLM-1, commonly used in the laboratories to study the link between mutation, copy number, and expression of telomere maintenance genes with the expression, copy number, and activity of BCR-ABL1. Our results demonstrated that the copy number and expression of BCR-ABL1 are crucial for telomere lengthening. We observed a correlation between BCR-ABL1 expression and telomere length as well as shelterins upregulation. Next-generation sequencing revealed pathogenic variants and copy number alterations in major tumor suppressors, such as TP53 and CDKN2A, but not in telomere-associated genes. Taken together, we showed that BCR-ABL1 kinase expression and activity play a crucial role in the maintenance of telomeres in CML cell lines. Our results may help to validate and properly interpret results obtained by many laboratories employing these in vitro models of CML.
Collapse
|
5
|
Allegra A, Innao V, Penna G, Gerace D, Allegra AG, Musolino C. Telomerase and telomere biology in hematological diseases: A new therapeutic target. Leuk Res 2017; 56:60-74. [PMID: 28196338 DOI: 10.1016/j.leukres.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
Telomeres are structures confined at the ends of eukaryotic chromosomes. With each cell division, telomeric repeats are lost because DNA polymerases are incapable to fully duplicate the very ends of linear chromosomes. Loss of repeats causes cell senescence, and apoptosis. Telomerase neutralizes loss of telomeric sequences by adding telomere repeats at the 3' telomeric overhang. Telomere biology is frequently associated with human cancer and dysfunctional telomeres have been proved to participate to genetic instability. This review covers the information on telomerase expression and genetic alterations in the most relevant types of hematological diseases. Telomere erosion hampers the capability of hematopoietic stem cells to effectively replicate, clinically resulting in bone marrow failure. Furthermore, telomerase mutations are genetic risk factors for the occurrence of some hematologic cancers. New discoveries in telomere structure and telomerase functions have led to an increasing interest in targeting telomeres and telomerase in anti-cancer therapy.
Collapse
Affiliation(s)
- Alessandro Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Vanessa Innao
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppa Penna
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Demetrio Gerace
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Andrea G Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Caterina Musolino
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
6
|
Dynamics of three-dimensional telomere profiles of circulating tumor cells in patients with high-risk prostate cancer who are undergoing androgen deprivation and radiation therapies. Urol Oncol 2016; 35:112.e1-112.e11. [PMID: 27956006 DOI: 10.1016/j.urolonc.2016.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Accurate assessment and monitoring of the therapeutic efficacy of locally advanced prostate cancer remains a major clinical challenge. Contrary to prostate biopsies, circulating tumor cells (CTCs) are a cellular source repeatedly obtainable by blood sampling and could serve as a surrogate marker for treatment efficacy. In this study, we used size-based filtration to isolate and enumerate CTCs from the blood of 20 patients with high-risk (any one of cT3, Gleason 8-10, or prostate-specific antigen>20ng/ml), nonmetastatic, and treatment-naive prostate cancer before and after androgen deprivation therapy (ADT) and radiation therapy (RT). MATERIALS AND METHODS We performed 3D telomere-specific quantitative fluorescence in situ hybridization on isolated CTCs to determine 3D telomere profiles for each patient before and throughout the course of both ADT and RT. RESULTS Based on the distinct 3D telomere signatures of CTC before treatment, patients were divided into 3 groups. ADT and RT resulted in distinct changes in 3D telomere signatures of CTCs, which were unique for each of the 3 patient groups. CONCLUSION The ability of 3D telomere analysis of CTCs to identify disease heterogeneity among a clinically homogeneous group of patients, which reveals differences in therapeutic responses, provides a new opportunity for better treatment monitoring and management of patients with high-risk prostate cancer.
Collapse
|