1
|
Yao S, Liu X, Feng Y, Li Y, Xiao X, Han Y, Xia S. Unveiling the Role of HGF/c-Met Signaling in Non-Small Cell Lung Cancer Tumor Microenvironment. Int J Mol Sci 2024; 25:9101. [PMID: 39201787 PMCID: PMC11354629 DOI: 10.3390/ijms25169101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is characterized by several molecular alterations that contribute to its development and progression. These alterations include the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), human epidermal growth factor receptor 2 (HER2), and mesenchymal-epithelial transition factor (c-MET). Among these, the hepatocyte growth factor (HGF)/c-MET signaling pathway plays a crucial role in NSCLC. In spite of this, the involvement of the HGF/c-MET signaling axis in remodeling the tumor microenvironment (TME) remains relatively unexplored. This review explores the biological functions of the HGF/c-MET signaling pathway in both normal and cancerous cells, examining its multifaceted roles in the NSCLC tumor microenvironment, including tumor cell proliferation, migration and invasion, angiogenesis, and immune evasion. Furthermore, we summarize the current progress and clinical applications of MET-targeted therapies in NSCLC and discuss future research directions, such as the development of novel MET inhibitors and the potential of combination immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (S.Y.); (X.L.); (Y.F.); (Y.L.); (X.X.); (Y.H.)
| |
Collapse
|
2
|
Hagege A, Saada-Bouzid E, Ambrosetti D, Rastoin O, Boyer J, He X, Rousset J, Montemagno C, Doyen J, Pedeutour F, Parola J, Bourget I, Luciano F, Bozec A, Cao Y, Pagès G, Dufies M. Targeting of c-MET and AXL by cabozantinib is a potential therapeutic strategy for patients with head and neck cell carcinoma. Cell Rep Med 2022; 3:100659. [PMID: 36130479 PMCID: PMC9512663 DOI: 10.1016/j.xcrm.2022.100659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/14/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Local or metastatic relapse following surgery, radiotherapy, and cisplatin is the leading cause of death in patients with head and neck squamous cell carcinoma (HNSCC). Our study shows overexpression of c-MET and AXL in HNSCC cells and patients resistant to radiotherapy and cisplatin. We demonstrate that cabozantinib, an inhibitor of vascular endothelial growth factor receptor (VEGFR), c-MET, and AXL, decreases migration, invasion, and proliferation and induces mitotic catastrophe and apoptotic cell death of naive and radiotherapy- and cisplatin-resistant HNSCC cells. Cabozantinib inhibits the growth and metastatic spread of experimental HNSCC in zebrafish and the growth of experimental HNSCC in mice by blocking tumor cell proliferation and angiogenesis. The efficacy of cabozantinib is also confirmed on viable sections of surgically removed specimens of human HNSCC and on a patient who relapses after five lines of treatment. These results suggest that cabozantinib is relevant for the treatment of patients with HNSCC after relapse under radiotherapy and cisplatin. AXL and c-MET are overexpressed in radiotherapy- and cisplatin-resistant HNSCC Overexpression of AXL and c-MET contributes to tumor aggressiveness and poor prognosis Cabozantinib has anti-tumor and anti-metastatic efficacy in mice and zebrafish models Cabozantinib efficacy is shown on HNSCC biopsies and in one patient after several relapses
Collapse
|
3
|
Lüttich L, Besso MJ, Heiden S, Koi L, Baumann M, Krause M, Dubrovska A, Linge A, Kurth I, Peitzsch C. Tyrosine Kinase c-MET as Therapeutic Target for Radiosensitization of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:1865. [PMID: 33919702 PMCID: PMC8070694 DOI: 10.3390/cancers13081865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 11/23/2022] Open
Abstract
The receptor tyrosine kinase c-MET activates intracellular signaling and induces cell proliferation, epithelial-to-mesenchymal-transition and migration. Within the present study, we validated the prognostic value of c-MET in patients with head and neck squamous cell carcinoma (HNSCC) treated with radio(chemo)therapy using the Cancer Genome Atlas database and found an association of increased MET gene expression and protein phosphorylation with reduced disease-specific and progression-free survival. To investigate the role of c-MET-dependent radioresistance, c-MET-positive cells were purified from established HNSCC cell lines and a reduced radiosensitivity and enhanced sphere-forming potential, compared to the c-MET-depleted cell population, was found in two out of four analyzed cell lines pointing to regulatory heterogeneity. We showed that c-MET is dynamically regulated after irradiation in vitro and in vivo. Interestingly, no direct impact of c-MET on DNA damage repair was found. The therapeutic potential of eight c-MET targeting agents in combination with irradiation demonstrated variable response rates in six HNSCC cell lines. Amongst them, crizotinib, foretinib, and Pha665752 exhibited the strongest radiosensitizing effect. Kinase activity profiling showed an association of crizotinib resistance with compensatory PI3K/AKT and MAP kinase signaling. Overall, our results indicate that c-MET is conferring radioresistance in HNSCC through modulation of intracellular kinase signaling and stem-like features.
Collapse
Affiliation(s)
- Lina Lüttich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
| | - María José Besso
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
| | - Stephan Heiden
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
| | - Lydia Koi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
| | - Michael Baumann
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Mechthild Krause
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| | - Annett Linge
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
| | - Claudia Peitzsch
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
4
|
Shergill K, Sen A, Pillai HJ. Role of E-cadherin and cyclin D1 as predictive markers of aggression and clonal expansion in head and neck squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg 2018; 44:182-190. [PMID: 30181985 PMCID: PMC6117463 DOI: 10.5125/jkaoms.2018.44.4.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/06/2017] [Accepted: 12/27/2017] [Indexed: 11/07/2022] Open
Abstract
Objectives Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Inconsistency in various histopathologic features for predicting nodal metastasis and overall prognosis and a better understanding of molecular mechanisms of tumourigenesis have shifted the focus to a search for more definitive predictive markers. To identify the role of two immunohistochemical (IHC) markers, E-cadherin and cyclin D1, as predictive markers of aggressiveness in HNSCC and to assess clonal expansion of tumour cells. Materials and Methods A total of 66 cases of HNSCC with neck node dissection were studied. IHC was performed on primary tumour sections and lymph nodes showing metastatic deposits. Histopathological parameters such as tumour grade and TNM stage together with nodal status were compared according to expression of the two markers. Fischer's chi-square test was used to assess the correlation between the two markers and histopathological parameters. Results Out of 66 cases studied, 37 showed LN metastasis. Most of the patients were male, and the most common tumour site was buccal mucosa. We found a significant association between loss of E-cadherin and node metastasis (P<0.001) and higher TNM stage (P<0.001). Cyclin D1 overexpression was significantly associated with only nodal metastasis (P=0.007). No significant association with tumour grade was found for either marker. The subgroup of E-cadherin loss with cyclin D1 overexpression was associated with the maximum incidence of nodal metastasis and higher TNM stage, highlighting the importance of using a combination of these two markers. A significant association was noted between the expression of markers at the primary site and at nodal deposits, indicating clonal expansion. Conclusion A combination of the two markers E-cadherin and cyclin D1 can predict prognosis in HNSCC, although tumour heterogeneity may affect this association in some cases.
Collapse
Affiliation(s)
| | - Arijit Sen
- Department of Pathology, Armed Forces Medical College, Pune, India
| | | |
Collapse
|
6
|
Sethi N, Wright A, Wood H, Rabbitts P. MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer 2014; 50:2619-35. [PMID: 25103455 DOI: 10.1016/j.ejca.2014.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022]
Abstract
MicroRNAs are a class of non-coding RNA which regulate gene expression. Their discovery in humans in 2000 has led to an explosion in research in this area in terms of their role as a biomarker, therapeutic target as well as trying to elucidate their function. This review aims to summarise the function of microRNAs as well as to examine how dysregulation at any step in their biogenesis or functional pathway can play a role in the development of cancer. We review which microRNAs are implicated as oncogenic or tumour suppressor in head and neck cancer as well as the data available on the use of microRNAs as diagnostic and prognostic marker. We also discuss routes for future research.
Collapse
Affiliation(s)
- Neeraj Sethi
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, West Yorkshire LS9 7TF, UK.
| | - Alexander Wright
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, West Yorkshire LS9 7TF, UK
| | - Henry Wood
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, West Yorkshire LS9 7TF, UK
| | - Pamela Rabbitts
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, West Yorkshire LS9 7TF, UK
| |
Collapse
|