1
|
Deutschmeyer VE, Schlaudraff NA, Walesch SK, Moyer J, Sokol AM, Graumann J, Meissner W, Schneider M, Muley T, Helmbold P, Schwinn M, Richter AM, Schmitz ML, Dammann RH. SIAH3 is frequently epigenetically silenced in cancer and regulates mitochondrial metabolism. Int J Cancer 2024. [PMID: 39344659 DOI: 10.1002/ijc.35202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Of the seven in absentia homologue (SIAH) family, three members have been identified in the human genome. In contrast to the E3 ubiquitin ligase encoding SIAH1 and SIAH2, little is known on the regulation and function of SIAH3 in tumorigenesis. In this study, we reveal that SIAH3 is frequently epigenetically silenced in different cancer entities, including cutaneous melanoma, lung adenocarcinoma and head and neck cancer. Low SIAH3 levels correlate with an impaired survival of cancer patients. Additionally, induced expression of SIAH3 reduces cell proliferation and induces cell death. Functionally, SIAH3 negatively affects cellular metabolism by shifting cells form aerobic oxidative phosphorylation to glycolysis. SIAH3 is localized in the mitochondrion and interacts with proteins involved in mitochondrial ribosome biogenesis and translation. We also report that SIAH3 interacts with ubiquitin ligases, including SIAH1 or SIAH2, and is degraded by them. These results suggest that SIAH3 acts as an epigenetically controlled tumor suppressor by regulating cellular metabolism through the inhibition of oxidative phosphorylation.
Collapse
Affiliation(s)
| | - Nico A Schlaudraff
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sara K Walesch
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Janine Moyer
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Anna M Sokol
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Institute of Translational Proteomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Wolfgang Meissner
- Core Facility for Cellular Metabolism, Department of Medicine, Philipps-University, Marburg, Germany
| | - Marc Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- University of Giessen Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Giessen, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- University of Giessen Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Giessen, Germany
| | - Peter Helmbold
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Markus Schwinn
- Institute of Biochemistry, Medical Faculty of the University Giessen, Giessen, Germany
| | - Antje M Richter
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty of the University Giessen, Giessen, Germany
| | - Reinhard H Dammann
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- University of Giessen Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
2
|
Oleksiewicz U, Machnik M, Sobocińska J, Molenda S, Olechnowicz A, Florczak A, Mierzejewska J, Adamczak D, Smolibowski M, Kaczmarek M, Mackiewicz A. ZNF643/ZFP69B Exerts Oncogenic Properties and Associates with Cell Adhesion and Immune Processes. Int J Mol Sci 2023; 24:16380. [PMID: 38003570 PMCID: PMC10671213 DOI: 10.3390/ijms242216380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The global cancer burden remains high; thus, a better understanding of the molecular mechanisms driving carcinogenesis is needed to improve current prevention and treatment options. We previously detected the ZNF643/ZFP69B gene upregulated in multiple tumors, and we speculated it may play a role in tumor biology. To test this hypothesis, we employed TCGA-centered databases to correlate ZNF643 status with various clinicopathological parameters. We also performed RNA-seq analysis and in vitro studies assessing cancer cell phenotypes, and we searched for ZNF643-bound genomic loci. Our data indicated higher levels of ZNF643 in most analyzed tumors compared to normal samples, possibly due to copy number variations. ZNF643 mRNA correlated with diverse molecular and immune subtypes and clinicopathological features (tumor stage, grade, patient survival). RNA-seq analysis revealed that ZNF643 silencing triggers the deregulation of the genes implicated in various cancer-related processes, such as growth, adhesion, and immune system. Moreover, we observed that ZNF643 positively influences cell cycle, migration, and invasion. Finally, our ChIP-seq analysis indicated that the genes associated with ZNF643 binding are linked to adhesion and immune signaling. In conclusion, our data confirm the oncogenic properties of ZNF643 and pinpoint its impact on cell adhesion and immune processes.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland
| | - Marta Machnik
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland
| | - Sara Molenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznan, Poland
| | - Anna Olechnowicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznan, Poland
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznan, Poland
| | - Anna Florczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland
| | - Julia Mierzejewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
| | - Dominika Adamczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
| | - Mikołaj Smolibowski
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (U.O.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
3
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
4
|
Aleotti V, Catoni C, Poggiana C, Rosato A, Facchinetti A, Scaini MC. Methylation Markers in Cutaneous Melanoma: Unravelling the Potential Utility of Their Tracking by Liquid Biopsy. Cancers (Basel) 2021; 13:6217. [PMID: 34944843 PMCID: PMC8699653 DOI: 10.3390/cancers13246217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| |
Collapse
|
5
|
Yamada T, Hasegawa S, Iwata Y, Arima M, Kobayashi T, Numata S, Nakata S, Sugiura K, Akamatsu H. UV irradiation-induced DNA hypomethylation around WNT1 gene: Implications for solar lentigines. Exp Dermatol 2020; 28:723-729. [PMID: 31020703 DOI: 10.1111/exd.13949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/13/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
Wnt/β-catenin signalling promotes melanogenesis in melanocytes and also induces melanocytogenesis from melanocyte stem cells (McSCs). Previous study reported that WNT1, a ligand which activates Wnt/β-catenin signalling pathway, was more highly expressed in the epidermis at SLs than in normal skin areas, suggesting that WNT1 causes hyperpigmentation. To elucidate the mechanism by which WNT1 expression is increased in SLs, we examined the methylation of 5-carbon of cytosine (5mC), that is 5-methylcytosine (5mC) level, in a region within the WNT1 promoter; the methylation of the region was known to negatively regulate WNT1 gene expression. We used an immortalized cell line of human interfollicular epidermal stem cells to analyse the effect of UVB irradiation on DNA methylation level of WNT1 promoter and found that UVB irradiation caused demethylation of WNT1 promoter and promoted WNT1 mRNA expression. It was also found that UVB irradiation reduced the expression of DNA methyltransferase 1 (DNMT1), an enzyme responsible for maintaining methylation patterns during cell division. Pathological analysis of SLs and non-SL regions in the human skin revealed that both DNMT1 expression and 5mC level were decreased at SLs compared to non-SL skins. Furthermore, bisulphite sequencing showed that the methylated CpG level in WNT1 promoter was also lower at SLs than in non-SL skins. Thus, in the skin exposed to a high amount of UV rays, excessive expression of WNT1 is thought to be caused by the demethylation of WNT1 promoter, and the upregulated WNT1 promotes melanocytogenesis and melanogenesis, then resulting in SL formation.
Collapse
Affiliation(s)
- Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Japan.,Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan.,Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan.,Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tsukane Kobayashi
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shigeki Numata
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Satoru Nakata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
6
|
Coati I, Lotz G, Fanelli GN, Brignola S, Lanza C, Cappellesso R, Pellino A, Pucciarelli S, Spolverato G, Guzzardo V, Munari G, Zaninotto G, Scarpa M, Mastracci L, Farinati F, Realdon S, Pilati P, Lonardi S, Valeri N, Rugge M, Kiss A, Loupakis F, Fassan M. Claudin-18 expression in oesophagogastric adenocarcinomas: a tissue microarray study of 523 molecularly profiled cases. Br J Cancer 2019; 121:257-263. [PMID: 31235864 PMCID: PMC6738069 DOI: 10.1038/s41416-019-0508-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Claudin-18 (CLDN18) is a highly specific tight junction protein of the gastric mucosa. An isoform of CLDN18, the Claudin 18.2, has recently emerged as an innovative drug target for metastatic gastric cancer. METHODS We investigated the immunohistochemical profile of CLDN18, p53, p16, E-cadherin, MSH2, MSH6, MLH1, PSM2, HER2, and PDL-1 in a large series of 523 primary gastric carcinomas (GCs; n = 408) and gastro-oesophageal carcinomas (GECs; n = 115) and 135 matched and synchronous nodal metastases. The status of HER2 and EBER by means of chromogenic in situ hybridisation (CISH) was also evaluated. RESULTS High membranous CLDN18 expression was present in 150/510 (29.4%) primary cases and in 45/132 (34.1%) metastases. An abnormal expression (i.e. nuclear and/or cytoplasmic) was observed in 115 (22.5%) primary cases and in 33 (25.0%) metastases. A 38.8% of the cases showed significant CLDN18 intratumoural variability among the different tissue microarray cores obtained from the same tumour. Positive membrane CLDN18 expression was statistically associated with non-antral GCs (p = 0.016), Lauren diffuse type (p = 0.009), and with EBV-associated cancers (p < 0.001). CONCLUSIONS CLDN18 is frequently expressed in gastric and gastro-oesophageal cancers; further studies should investigate the prognostic significance of CLDN18 heterogeneity in order to implement its test into clinical practice.
Collapse
Affiliation(s)
- Irene Coati
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Giuseppe Nicolò Fanelli
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Stefano Brignola
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Cristiano Lanza
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Rocco Cappellesso
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Antonio Pellino
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Surgery Unit, University of Padua, Padua, Italy
| | - Gaya Spolverato
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Surgery Unit, University of Padua, Padua, Italy
| | - Vincenza Guzzardo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Giada Munari
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Marco Scarpa
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Surgery Unit, University of Padua, Padua, Italy
| | - Luca Mastracci
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Pathology Unit, University of Genova, Genova, Italy
| | - Fabio Farinati
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Stefano Realdon
- Unit of Gastroenterology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Pierluigi Pilati
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Sara Lonardi
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
- Veneto Cancer Registry, Padua, Italy
| | - Andras Kiss
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Fotios Loupakis
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| |
Collapse
|
7
|
Zhang LL, Kwak H, Yin SJ, Lee BN, Chang YJ, Hahn MJ, Yang JM, Lee JR, Park YD. An OMICS-based study of the role of C3dg in keratinocytes: RNA sequencing, antibody-chip array, and bioinformatics approaches. Int J Biol Macromol 2019; 133:391-411. [DOI: 10.1016/j.ijbiomac.2019.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/06/2019] [Accepted: 04/06/2019] [Indexed: 01/01/2023]
|
8
|
False Discovery Rate Control in Cancer Biomarker Selection Using Knockoffs. Cancers (Basel) 2019; 11:cancers11060744. [PMID: 31146393 PMCID: PMC6628039 DOI: 10.3390/cancers11060744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 11/17/2022] Open
Abstract
The discovery of biomarkers that are informative for cancer risk assessment, diagnosis, prognosis and treatment predictions is crucial. Recent advances in high-throughput genomics make it plausible to select biomarkers from the vast number of human genes in an unbiased manner. Yet, control of false discoveries is challenging given the large number of genes versus the relatively small number of patients in a typical cancer study. To ensure that most of the discoveries are true, we employ a knockoff procedure to control false discoveries. Our method is general and flexible, accommodating arbitrary covariate distributions, linear and nonlinear associations, and survival models. In simulations, our method compares favorably to the alternatives; its utility of identifying important genes in real clinical applications is demonstrated by the identification of seven genes associated with Breslow thickness in skin cutaneous melanoma patients.
Collapse
|
9
|
Horné F, Dietze R, Berkes E, Oehmke F, Tinneberg HR, Meinhold-Heerlein I, Konrad L. Impaired Localization of Claudin-11 in Endometriotic Epithelial Cells Compared to Endometrial Cells. Reprod Sci 2018; 26:1181-1192. [PMID: 30514158 DOI: 10.1177/1933719118811643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Claudins are the major components of tight junctions and are often deregulated in human cancer, permitting escape of cancer cells along with the acquisition of invasive properties. Similarly, endometrial cells also show invasive capabilities; however, the role of tight junctions in endometriosis has only rarely been examined. In this study, we analyzed the protein expression and localization of claudin-7 and claudin-11 in human eutopic and ectopic endometrium and endometrial cell lines. We identified claudin-7 primarily at the basolateral junctions of the glandular epithelial cells in eutopic endometrium as well as in the ectopic lesions in nearly all glands and cysts. Quantification of claudin-7 localization by HSCORE showed a slight increase in peritoneal and deep infiltrating endometriosis (DIE) compared to eutopic endometrium. In contrast, claudin-11 was localized mainly in the apicolateral junctions in nearly all glandular epithelial cells of the eutopic endometrium. Interestingly, we observed a deregulation of claudin-11 localization to a basal or basolateral localization in ovarian (P < .001), peritoneal (P < .01), and DIE (P < .05) and a moderately decreased abundance in ovarian endometriosis. In endometrial cell lines, claudin-7 was only present in epithelial Ishikawa cells, and silencing by small-interfering RNA increased cell invasiveness. In contrast, claudin-11 could be demonstrated in Ishikawa and endometriotic 12Z and 49Z cells. Silencing of claudin-11 decreased invasiveness of 12Z slightly but significantly in 49Z. We suggest that although claudin-7 and claudin-11 can be found in nearly all eutopic and ectopic epithelial cells, the impaired localization of claudin-11 in ectopic endometrium might contribute to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Fabian Horné
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | - Raimund Dietze
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | - Eniko Berkes
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | - Frank Oehmke
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | | | | | - Lutz Konrad
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| |
Collapse
|
10
|
Guo Y, Long J, Lei S. Promoter methylation as biomarkers for diagnosis of melanoma: A systematic review and meta-analysis. J Cell Physiol 2018; 234:7356-7367. [PMID: 30370527 DOI: 10.1002/jcp.27495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/06/2018] [Indexed: 01/19/2023]
Abstract
Melanoma is one of the most common skin cancer that is characterized by rapid growth, early metastasis, high malignant, and mortality. Accumulating evidence demonstrated that promoter methylation of tumor-suppressor genes is implicated in the pathogenesis of melanoma. In the current study, we performed a meta-analysis to identify promising methylation biomarkers in the diagnosis of melanoma. We carried out a systematic literature search using Pubmed, Embase, and ISI web knowledge database and found that gene promoter methylation of 50 genes was reported to be associated with the risk of melanoma. Meta-analysis revealed that hypermethylation of claudin 11 (CLDN11; odds ratio [OR], 16.82; 95% confidence interval [CI], 1.97-143.29; p = 0.010), O-6-methylguanine-DNA methyltransferase (MGMT; OR, 5.59; 95% CI, 2.51-12.47; p < 0.0001), cyclin-dependent kinase inhibitor 2A (p16; OR, 6.57; 95% CI, 2.19-19.75; p = 0.0008), retinoic acid receptor β (RAR-β2; OR, 24.31; 95% CI, 4.58-129.01; p = 0.0002), and Ras association domain family member (RASSF1A; OR, 9.35; 95% CI, 4.73-18.45; p < 0.00001) was significantly higher in melanoma patients compared with controls. CLDN11 (OR, 14.52; 95% CI, 1.84-114.55; p = 0.01), MGMT (OR, 8.08; 95% CI, 1.84-35.46; p = 0.006), p16 (OR, 9.44; 95% CI, 2.68-33.29; p = 0.0005), and RASSF1A (OR, 7.72; 95% CI, 1.05-56.50; p = 0.04) hypermethylation was significantly increased in primary melanoma compared with controls. Methylation frequency of CLDN11 (OR, 25.56; 95% CI, 2.32-281.66; p = 0.008), MGMT (OR, 4.64; 95% CI, 1.98-10.90; p = 0.0004), p16 (OR, 4.31; 95% CI, 1.33-13.96; p = 0.01), and RASSF1A (OR, 10.10; 95% CI, 2.87-35.54; p = 0.0003) was significantly higher in metastasis melanoma compared with controls. These findings indicated that CLDN11, MGMT, p16, RAR-β2, and RASSF1A hypermethylation is a risk factor and a potential biomarker for melanoma. CLDN11, MGMT, p16, and RASSF1A promoter methylation may take part in the development of melanoma and become useful biomarkers in the early diagnosis of the disease.
Collapse
Affiliation(s)
- Yu Guo
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhong Long
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018; 190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Li HP, Peng CC, Wu CC, Chen CH, Shih MJ, Huang MY, Lai YR, Chen YL, Chen TW, Tang P, Chang YS, Chang KP, Hsu CL. Inactivation of the tight junction gene CLDN11 by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:102. [PMID: 29747653 PMCID: PMC5946489 DOI: 10.1186/s13046-018-0754-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant hypermethylation of cellular genes is a common phenomenon to inactivate genes and promote tumorigenesis in nasopharyngeal carcinoma (NPC). METHODS Methyl binding domain (MBD)-ChIP sequencing of NPC cells, microarray data of NPC biopsies and gene ontology analysis were conducted to identify a potential tumor suppressor gene CLDN11 that was both hypermethylated and downregulated in NPC. Bisulfite sequencing, qRT-PCR, immunohistochemistry staining of the NPC clinical samples and addition of methylation inhibitor, 5'azacytidine, in NPC cells were performed to verify the correlation between DNA hypermethylation and expression of CLDN11. Promoter reporter and EMSA assays were used to dissect the DNA region responsible for transcription activator binding and to confirm whether DNA methylation could affect activator's binding, respectively. CLDN11 was transiently overexpressed in NPC cells followed by cell proliferation, migration, invasion assays to characterize its biological roles. Co-immunoprecipitation experiments and proteomic approach were carried out to identify novel interacting protein(s) and the binding domain of CLDN11. Anti-tumor activity of the CLDN11 was elucidated by in vitro functional assay. RESULTS A tight junction gene, CLDN11, was identified as differentially hypermethylated gene in NPC. High methylation percentage of CLDN11 promoter in paired NPC clinical samples was correlated with low mRNA expression level. Immunohistochemistry staining of NPC paired samples tissue array demonstrated that CLDN11 protein expression was relatively low in NPC tumors. Transcription activator GATA1 bound to CLDN11 promoter region - 62 to - 53 and its DNA binding activity was inhibited by DNA methylation. Re-expression of CLDN11 reduced cell migration and invasion abilities in NPC cells. By co-immunoprecipitation and liquid chromatography-tandem mass spectrometry LC-MS/MS, tubulin alpha-1b (TUBA1B) and beta-3 (TUBB3), were identified as the novel CLDN11-interacting proteins. CLDN11 interacted with these two tubulins through its intracellular loop and C-terminus. Furthermore, these domains were required for CLDN11-mediated cell migration inhibition. Treatment with a tubulin polymerization inhibitor, nocodazole, blocked NPC cell migration. CONCLUSIONS CLDN11 is a hypermethylated and downregulated gene in NPC. Through interacting with microtubules TUBA1B and TUBB3, CLDN11 blocks the polymerization of tubulins and cell migration activity. Thus, CLDN11 functions as a potential tumor suppressor gene and silencing of CLDN11 by DNA hypermethylation promotes NPC progression.
Collapse
Affiliation(s)
- Hsin-Pai Li
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan. .,Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan. .,Division of Hematology-Oncology, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan.
| | - Chen-Ching Peng
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chien-Hsun Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Meng-Jhe Shih
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mei-Yuan Huang
- Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yung-Li Chen
- Department of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Bioinformatics Center, Medical School, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Bioinformatics Center, Medical School, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan
| |
Collapse
|
13
|
Claudin 11 regulates bone homeostasis via bidirectional EphB4-EphrinB2 signaling. Exp Mol Med 2018; 50:1-18. [PMID: 29700355 PMCID: PMC5938033 DOI: 10.1038/s12276-018-0076-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/06/2018] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
Claudins (Cldns) are well-established components of tight junctions (TJs) that play a pivotal role in the modulation of paracellular permeability. Several studies have explored the physiologic aspects of Cldn family members in bone metabolism. However, the effect of Cldn11, a major component of central nervous system myelin, on bone homeostasis has not been reported. In this study, we demonstrate that Cldn11 is a potential target for bone disease therapeutics as a dual modulator of osteogenesis enhancement and osteoclastogenesis inhibition. We found that Cldn11 played a negative role in the receptor activator of nuclear factor kappa B ligand-induced osteoclast (OC) differentiation and function by downregulating the phosphorylated form of extracellular signal-regulated kinase (ERK), Bruton's tyrosine kinase, and phospholipase C gamma 2, in turn impeding c-Fos and nuclear factor in activated T cell c1 expression. The enhancement of osteoblast (OB) differentiation by positive feedback of Cldn11 was achieved through the phosphorylation of Smad1/5/8, ERK, and c-Jun amino-terminal kinase. Importantly, this Cldn11-dependent dual event in bone metabolism arose from targeting EphrinB2 ligand reverse signaling in OC and EphB4 receptor forward signaling in OB. In agreement with these in vitro effects, subcutaneous injection of Cldn11 recombinant protein exerted anti-resorbing effects in a lipopolysaccharide-induced calvarial bone loss mouse model and increased osteogenic activity in a calvarial bone formation model. These findings suggest that Cldn11 is a novel regulator in bone homeostasis.
Collapse
|
14
|
Whole genome DNA methylation profiling of oral cancer in ethnic population of Meghalaya, North East India reveals novel genes. Genomics 2017; 110:112-123. [PMID: 28890207 DOI: 10.1016/j.ygeno.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
Abstract
Oral Squamous Cell Carcinoma (OSCC) is a serious and one of the most common and highly aggressive malignancies. Epigenetic factors such as DNA methylation have been known to be implicated in a number of cancer etiologies. The main objective of this study was to investigate physiognomies of Promoter DNA methylation patterns associated with oral cancer epigenome with special reference to the ethnic population of Meghalaya, North East India. The present study identifies 27,205 CpG sites and 3811 regions that are differentially methylated in oral cancer when compared to matched normal. 45 genes were found to be differentially methylated within the promoter region, of which 38 were hypermethylated and 7 hypomethylated. 14 of the hypermethylated genes were found to be similar to that of the TCGA-HNSCC study some of which are TSGs and few novel genes which may serve as candidate methylation biomarkers for OSCC in this poorly characterized ethnic group.
Collapse
|
15
|
Shen Z, Cao B, Lin L, Zhou C, Ye D, Qiu S, Li Q, Cui X. The Clinical Signification of Claudin-11 Promoter Hypermethylation for Laryngeal Squamous Cell Carcinoma. Med Sci Monit 2017; 23:3635-3640. [PMID: 28743857 PMCID: PMC5541974 DOI: 10.12659/msm.904751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Claudin-11 (CLDN11) is frequently silenced by its promoter hypermethylation. Previous studies have shown that CLDN11 promoter hypermethylation is a potential biomarker for diagnosing various cancers. The aim of this study was to investigate CLDN11 promoter methylation and its potential relevance to clinicopathologic features and prognosis of patients with laryngeal squamous cell carcinoma (LSCC). Material/Methods Using the quantitative methylation-specific polymerase chain reaction (qMSP), CLDN11 promoter methylation was measured in 91 tumor tissues and their paired adjacent normal tissues, and the relationship between CLDN11 methylation and clinicopathologic features was evaluated. A receiver operating characteristic (ROC) curve was created to assess diagnostic values, and the Kaplan-Meier survival analysis was used to evaluate the association between CLDN11 methylation and prognosis of patients with LSCC. Results Our results showed significantly elevated promoter methylation of CLDN11 in tumor tissues compared to their adjacent tissues (p=1.227E-16). CLDN11 promoter methylation also increased in patients with lymph node metastasis (p=0.009), advanced clinical stage (p=9.26E-06) and higher T classification (p=0.003). The area under the ROC curve (AUC) of CLDN11 was 0.884 (95% CI=0.835–0.932, p<0.01). The Kaplan-Meier analysis indicated that high CLDN11 promoter methylation levels were associated with poor overall survival of LSCC patients (log-rank test, p=0.007). Conclusions We demonstrated that CLDN11 promoter hypermethylation is a frequent event in LSCC, and contributes to metastasis and progression of LSCC. Thus, CLDN11 could be a potential biomarker for diagnosis and prognosis of LSCC patients.
Collapse
Affiliation(s)
- Zhisen Shen
- Department of Otolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Bing Cao
- Department of Otolaryngology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Lexi Lin
- Department of Otolaryngology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Chongchang Zhou
- Department of Otolaryngology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Dong Ye
- Department of Otolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Shijie Qiu
- Department of Otolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Qun Li
- Department of Otolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Xiang Cui
- Department of Otolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China (mainland)
| |
Collapse
|
16
|
Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 2017; 36:5771-5792. [PMID: 28604751 DOI: 10.1038/onc.2017.189] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma.
Collapse
|
17
|
Abstract
Melanoma is a malignant tumor of melanocytes and is considered to be the most aggressive cancer among all skin diseases. The pathogenesis of melanoma has not been well documented, which may restrict the research and development of biomarkers and therapies. To date, several genetic and epigenetic factors have been identified as contributing to the development and progression of melanoma. Besides the findings on genetic susceptibilities, the recent progress in epigenetic studies has revealed that loss of the DNA hydroxymethylation mark, 5-hydroxymethylcytosine (5-hmC), along with high levels of DNA methylation at promoter regions of several tumor suppressor genes in melanoma, may serve as biomarkers for melanoma. Moreover, 5-Aza-2′-deoxycytidine, an epigenetic modifier causing DNA demethylation, and ten-eleven translocation family dioxygenase (TET), which catalyzes the generation of 5-hmC, demonstrate therapeutic potential in melanoma treatment. In this review, we will summarize the latest progress in research on DNA methylation/hydroxymethylation in melanoma, and we will discuss and provide insight for epigenetic biomarkers and therapies for melanoma. Particularly, we will discuss the role of DNA hydroxymethylation in melanoma infiltrating immune cells, which may also serve as a potential target for melanoma treatment.
Collapse
|
18
|
Nissinen L, Siljamäki E, Riihilä P, Piipponen M, Farshchian M, Kivisaari A, Kallajoki M, Raiko L, Peltonen J, Peltonen S, Kähäri VM. Expression of claudin-11 by tumor cells in cutaneous squamous cell carcinoma is dependent on the activity of p38δ. Exp Dermatol 2017; 26:771-777. [PMID: 27992079 DOI: 10.1111/exd.13278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2016] [Indexed: 12/20/2022]
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is rapidly increasing, and the prognosis of patients with metastatic disease is poor. There is an emerging need to identify molecular markers for predicting aggressive behaviour of cSCC. Here, we have examined the role of tight junction (TJ) components in the progression of cSCC. The expression pattern of mRNAs for TJ components was determined with RNA sequencing and oligonucleotide array-based expression analysis from cSCC cell lines (n=8) and normal human epidermal keratinocytes (NHEK, n=5). The expression of CLDN11 was specifically elevated in primary cSCC cell lines (n=5), but low or absent in metastatic cSCC cell lines (n=3) and NHEKs. Claudin-11 was detected in cell-cell contacts of primary cSCC cells in culture by indirect immunofluorescence analysis. Analysis of a large panel of tissue samples from sporadic UV-induced cSCC (n=65), cSCC in situ (n=56), actinic keratoses (n=31), seborrhoeic keratoses (n=7) and normal skin (n=16) by immunohistochemistry showed specific staining for claudin-11 in intercellular junctions of keratinizing tumor cells in well and moderately differentiated cSCCs, whereas no staining for claudin-11 was detected in poorly differentiated tumors. The expression of claudin-11 in cSCC cells was dependent on the activity of p38δ MAPK and knock-down of claudin-11 enhanced cSCC cell invasion. These findings provide evidence for the role of claudin-11 in regulation of cSCC invasion and suggest loss of claudin-11 expression in tumor cells as a biomarker for advanced stage of cSCC.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Atte Kivisaari
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura Raiko
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Hahn-Strömberg V, Askari S, Ahmad A, Befekadu R, Nilsson TK. Expression of claudin 1, claudin 4, and claudin 7 in colorectal cancer and its relation with CLDN DNA methylation patterns. Tumour Biol 2017; 39:1010428317697569. [DOI: 10.1177/1010428317697569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Altered claudin expression has been described in colon, prostatic, ovarian, and breast carcinoma. However, the role of epigenetic modifications in these genes and their role in colorectal cancer is unknown. We aimed our study to investigate whether claudin protein expression and methylation of CLDN can influence the tumorigenesis of colorectal cancer. A total of 31 patients diagnosed with colorectal carcinoma was used in this study. Immunohistochemical staining was used to study protein expression in both tumor and the adjacent nonneoplastic mucosa of claudin 1, 4, and 7. To detect the DNA methylation pattern of CLDN1, 4, and 7, genomic DNA was extracted from both the tumor and the adjacent nonneoplastic mucosa. Methylation analysis was carried out using bisulfite pyrosequencing. Cell membrane staining intensity of all claudins was found significantly lower in colorectal cancer tissues when compared to paired normal mucosa (p ≤ 0.001). For claudin 4, the percentage of cells staining positively was also significantly reduced (p = 0.04). In normal mucosa, cytoplasm showed no staining for claudins in any patient, whereas in paired colorectal cancer tissues, significant cytoplasmic staining appeared both for claudin 1 (p = 0.04) and claudin 4 (p = 0.01). Tumor samples were significantly hypomethylated in CLDN1 (p < 0.05). In conclusion, our results show that CLDN1 is significantly hypomethylated in tumor samples and that the membrane staining intensity for claudin 1, 4, and 7 is significantly lower in colorectal cancer tissues than in adjacent nonneoplastic tissue. Colorectal cancer cells showed dystopic cytoplasmic location of claudins.
Collapse
Affiliation(s)
| | - Shlear Askari
- Department of Clinical Research, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Abrar Ahmad
- Department of Clinical Research, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Rahel Befekadu
- Department of Clinical Research, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Torbjörn K Nilsson
- Division of Clinical Chemistry, Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Xin Y, Li Z, Chan MT, Wu WKK. Circulating epigenetic biomarkers in melanoma. Tumour Biol 2015; 37:1487-92. [DOI: 10.1007/s13277-015-4599-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023] Open
|