1
|
Chen Y, Lan T. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front Pharmacol 2024; 15:1451957. [PMID: 39359255 PMCID: PMC11444995 DOI: 10.3389/fphar.2024.1451957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The incidence rate of prostate cancer (PCa) has risen by 3% per year from 2014 through 2019 in the United States. An estimated 34,700 people will die from PCa in 2023, corresponding to 95 deaths per day. Castration resistant prostate cancer (CRPC) is the leading cause of deaths among men with PCa. Androgen receptor (AR) plays a critical role in the development of CRPC. N-terminal domain (NTD) is the essential functional domain for AR transcriptional activation, in which modular activation function-1 (AF-1) is important for gene regulation and protein interactions. Over last 2 decades drug discovery against NTD has attracted interest for CRPC treatment. However, NTD is an intrinsically disordered domain without stable three-dimensional structure, which has so far hampered the development of drugs targeting this highly dynamic structure. Employing high throughput cell-based assays, small-molecule NTD inhibitors exhibit a variety of unexpected properties, ranging from specific binding to NTD, blocking AR transactivation, and suppressing oncogenic proliferation, which prompts its evaluation in clinical trials. Furthermore, molecular dynamics simulations reveal that compounds can induce the formation of collapsed helical states. Nevertheless, our knowledge of NTD structure has been limited to the primary sequence of amino acid chain and a few secondary structure motif, acting as a barrier for computational and pharmaceutical analysis to decipher dynamic conformation and drug-target interaction. In this review, we provide an overview on the sequence-structure-function relationships of NTD, including the polymorphism of mono-amino acid repeats, functional elements for transcription regulation, and modeled tertiary structure of NTD. Moreover, we summarize the activities and therapeutic potential of current NTD-targeting inhibitors and outline different experimental methods contributing to screening novel compounds. Finally, we discuss current directions for structure-based drug design and potential breakthroughs for exploring pharmacological motifs and pockets in NTD, which could contribute to the discovery of new NTD inhibitors.
Collapse
Affiliation(s)
- Ye Chen
- Department of Anesthesiology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| | - Tian Lan
- Department of Urology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Nair GG, Linster ED, Ray P, Quadir MA, Reindl KM. Extracellular Signal-Regulated Kinase Inhibitor SCH772984 Augments the Anti-Cancer Effects of Gemcitabine in Nanoparticle Form in Pancreatic Cancer Models. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:220-233. [PMID: 39493509 PMCID: PMC11530947 DOI: 10.22088/ijmcm.bums.13.3.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 11/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a poor response to the limited treatment options currently available. Hence, there is a need to identify new agents that could enhance the efficacy of existing treatments. This study investigated a combination therapy using gemcitabine (GEM) and SCH772984, an extracellular signal-regulated kinase (ERK) inhibitor, in both free form and nanoparticle-encapsulated form for PDAC treatment. Cell viability and Matrigel growth assays were used to determine the anti-proliferative and cytotoxic effects of GEM and SCH772984 on PDAC cells. Additionally, western blotting was used to determine the degree to which SCH772984 engaged ERK in PDAC cells. Lastly, immunohistochemistry and hematoxylin and eosin (H&E) staining were used to determine how GEM and SCH772984 affected expression of Ki-67 cell proliferation marker in PDX (patient derived xenograft) PDAC tissues. PDAC cell lines (MIA PaCa-2 and PANC-1) treated with the combination of free GEM and SCH772984 showed reduction in cell viability compared to cells treated with free GEM or SCH772984 administered as a single agent. Encapsulated forms of GEM and SCH772984 caused a greater reduction in cell viability than the free forms. Interestingly, co-administration of GEM and SCH772984 in separate nanoparticle (NP) systems exhibited the highest reduction in cell viability. Western blotting analysis confirmed ERK signaling was inhibited by both free and encapsulated SCH772984. Importantly, GEM did not interfere with the inhibitory effect of SCH772984 on phosphorylated ERK (pERK). Collectively, our studies suggest that combination therapy with GEM and SCH772984 effectively reduced PDAC cell viability and growth, and co-administration of NP encapsulated GEM and SCH772984 in separate NP systems is an effective treatment strategy for PDAC.
Collapse
Affiliation(s)
- Gauthami G Nair
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| | - Elena D Linster
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| | - Priyanka Ray
- Department of Coatings and Polymeric Materials, NDSU, Fargo, North Dakota, U.S.A.
| | - Mohiuddin A Quadir
- Department of Coatings and Polymeric Materials, NDSU, Fargo, North Dakota, U.S.A.
| | - Katie M Reindl
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| |
Collapse
|
3
|
Han MTT, Pornprasert S, Saeteng S, Tantraworasin A, Siwachat S, Thuropathum P, Chewaskulyong B, Cressey R. Small RNA Deep Sequencing of Circulating Small RNAs Discovers a Unique Panel of microRNAs as Feasible and Reliable Biomarkers of Non-Small Cell Lung Cancers in Northern Thailand. Asian Pac J Cancer Prev 2023; 24:3585-3598. [PMID: 37898867 PMCID: PMC10770667 DOI: 10.31557/apjcp.2023.24.10.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE This study aimed to assess the practicality and reliability of utilizing microRNAs (miRNAs) as a potential screening and diagnosing tool for non-small cell lung cancers (NSCLCs) in Northern Thailand. METHODS Small RNA sequencing and a literature review was performed to obtain a list of serum miRNA candidates. Serum levels of these selected miRNA candidates were measured in patients with NSCLC and healthy volunteers by real-time RT-PCR and receiver operating characteristic curve (ROC) were used to assess diagnostic performance. RESULTS Sequencing data revealed 148 known miRNAs and 230 novel putative miRNAs in serum samples; 19 serum miRNAs were significantly downregulated and 242 were upregulated. Seven miRNAs selected according to sequencing data and 11 miRNAs according to previous reports were evaluated in training cohort (45 lung cancer patients, 26 controls) and 6 miRNAs were found differentially expressed (p < 0.05, Mann Whitney U test) and associated (p < 0.05, Chi-square test) with NSCLC development. Further analysis and verification identified an optimal combination of 4 miRNAs composed of hsa-miR23a, hsa-miR26b, hsa-miR4488 and novel-130 to provide the optimal AUC of 0.901±0.034. Detection of serum miRNA by real-time RT-PCR showed good reproducibility with the coefficient of variation (CV) ≤ 4%. The optimal screening miRNAs panel was primarily identified through sequencing data of local patient population, thus indicating that the etiology of NSCLCs may differ from one population to other and thus require a unique panel of miRNAs for their identification. CONCLUSION Circulating miRNA is a feasible screening tool for NSCLCs. Nevertheless, populations with different lung cancer etiology may need to identify their own most suitable miRNA panel.
Collapse
Affiliation(s)
- Moe Thi Thi Han
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Thailand.
| | - Sakorn Pornprasert
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Thailand.
| | - Somcharoen Saeteng
- Department of Surgery, Faculty of Medicine, Chiang Mai University, Thailand.
| | | | - Sophon Siwachat
- Department of Surgery, Faculty of Medicine, Chiang Mai University, Thailand.
| | | | | | - Ratchada Cressey
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Thailand.
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Thailand.
| |
Collapse
|
4
|
Yao S, Lan H, Han Y, Mao C, Yang M, Zhang X, Jin K. From organ preservation to selective surgery: How immunotherapy changes colorectal surgery? Surg Open Sci 2023; 15:44-53. [PMID: 37637243 PMCID: PMC10450522 DOI: 10.1016/j.sopen.2023.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the traditional treatment paradigm of colorectal cancer (CRC). Among them, immune checkpoint blockade has become the first-line treatment for metastatic colorectal cancer (mCRC) and has made significant progress in the treatment of locally advanced colorectal cancer (LACRC). We reviewed a series of clinical trials that have made breakthrough progress. We will emphasize the breakthrough progress in achieving organ preservation in patients with high microsatellite instability or DNA mismatch repair deficiency (MSI-H/dMMR), and based on this, we propose the concept of selective surgery, which includes selectively removing or preserving lymph nodes, with the aim of proving our idea through more research in the future.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Chunsen Mao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650106, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| |
Collapse
|
5
|
Zeng J, Chen J, Li M, Zhong C, Liu Z, Wang Y, Li Y, Jiang F, Fang S, Zhong W. Integrated high-throughput analysis identifies super enhancers in metastatic castration-resistant prostate cancer. Front Pharmacol 2023; 14:1191129. [PMID: 37292153 PMCID: PMC10244677 DOI: 10.3389/fphar.2023.1191129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Background: Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive stage of prostate cancer, and non-mutational epigenetic reprogramming plays a critical role in its progression. Super enhancers (SE), epigenetic elements, are involved in multiple tumor-promoting signaling pathways. However, the SE-mediated mechanism in mCRPC remains unclear. Methods: SE-associated genes and transcription factors were identified from a cell line (C4-2B) of mCRPC by the CUT&Tag assay. Differentially expressed genes (DEGs) between mCRPC and primary prostate cancer (PCa) samples in the GSE35988 dataset were identified. What's more, a recurrence risk prediction model was constructed based on the overlapping genes (termed SE-associated DEGs). To confirm the key SE-associated DEGs, BET inhibitor JQ1 was applied to cells to block SE-mediated transcription. Finally, single-cell analysis was performed to visualize cell subpopulations expressing the key SE-associated DEGs. Results: Nine human TFs, 867 SE-associated genes and 5417 DEGs were identified. 142 overlapping SE-associated DEGs showed excellent performance in recurrence prediction. Time-dependent receiver operating characteristic (ROC) curve analysis showed strong predictive power at 1 year (0.80), 3 years (0.85), and 5 years (0.88). The efficacy of his performance has also been validated in external datasets. In addition, FKBP5 activity was significantly inhibited by JQ1. Conclusion: We present a landscape of SE and their associated genes in mCPRC, and discuss the potential clinical implications of these findings in terms of their translation to the clinic.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Maozhang Li
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Chuanfan Zhong
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zezhen Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Yan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuejiao Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Funeng Jiang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shumin Fang
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Hermansyah D, Paramita DA, Paramita DA, Amalina ND. Combination Curcuma longa and Phyllanthus niruri Extract Potentiate Antiproliferative in Triple Negative Breast Cancer MDAMB-231 Cells. Asian Pac J Cancer Prev 2023; 24:1495-1505. [PMID: 37247268 PMCID: PMC10495890 DOI: 10.31557/apjcp.2023.24.5.1495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Triple negative breast cancer cells (TNBC) are a small part of cancer-inducing cells in breast cancer, which are characterized by high metastatic and self-renewal. Self-renewal has the ability to renew itself and loses control of proliferation. Curcuma longa extract (CL) and Phyllanthus niruri extract (PN) known to have anti-proliferative effects on cancer cells. However, the effects of combination CL and PN on TNBC proliferation still unclear. AIMS This study aimed to evaluate the antiproliferative effects of the combination CL and PN on TNBC MDAMB-231 and attempted to elucidate the underlying molecular mechanisms. SUBJECTS AND METHODS The dried rhizomes of Curcuma longa and the herbs of Phyllanthus niruri were macerated with ethanol for 72 h.The antiproliferative and synergistic effects of combination CL and PN were investigated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Combination index values were calculated using CompuSyn (ComboSyn, Inc, Paramus, NJ). The cell cycle and apoptosis assay were determined by propidium iodide (PI) and PI-AnnexinV assay under flow cytometer, respectively. The intracellular ROS levels were evaluated using 2',7'-Dichlorodihydrofluorescein diacetate (DCFDA) assay. The mRNA expressions of proliferation-related genes in the cells were determined using bioinformatic assay. RESULTS The CL and PN single treatment caused a potent and dose-dependent decrease in the percentage of viable cells with IC50 value of 13 μg/mL and 45 μg/mL for 24 h, respectively. The combination index values of the different combinations ranged from 0.08 - 0.90, indicating slightly strong to very strong synergistic effects. The combination of CL and PN also remarkably induced the S- and G2/M-phases cell cycle arrest that leading to apoptosis induction. Furthermore, the combination of CL and PN treatment induced the intracellular reactive oxygen species (ROS) levels. Mechanistically, the AKT1, EP300, STAT3 and EGFR signaling as potential targets of combination CL and PN in antiproliferation and antimetastatic of TNBC. CONCLUSIONS The combination of CL and PN exerted promising antiproliferative effects in TNBC. Therefore, CL and PN may be considered a potential source for the development of potent anticancer drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Dedy Hermansyah
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | | | | | - Nur Dina Amalina
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Indonesia.
| |
Collapse
|
7
|
Chandrasekaran B, Tapadar S, Wu B, Saran U, Tyagi A, Johnston A, Gaul DA, Oyelere AK, Damodaran C. Antiandrogen-Equipped Histone Deacetylase Inhibitors Selectively Inhibit Androgen Receptor (AR) and AR-Splice Variant (AR-SV) in Castration-Resistant Prostate Cancer (CRPC). Cancers (Basel) 2023; 15:1769. [PMID: 36980655 PMCID: PMC10046692 DOI: 10.3390/cancers15061769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Epigenetic modification influences androgen receptor (AR) activation, often resulting in prostate cancer (PCa) development and progression. Silencing histone-modifying enzymes (histone deacetylases-HDACs) either genetically or pharmacologically suppresses PCa proliferation in preclinical models of PCa; however, results from clinical studies were not encouraging. Similarly, PCa patients eventually become resistant to androgen ablation therapy (ADT). Our goal is to develop dual-acting small molecules comprising antiandrogen and HDAC-inhibiting moieties that may overcome the resistance of ADT and effectively suppress the growth of castration-resistant prostate cancer (CRPC). METHODS Several rationally designed antiandrogen-equipped HDAC inhibitors (HDACi) were synthesized, and their efficacy on CRPC growth was examined both in vitro and in vivo. RESULTS While screening our newly developed small molecules, we observed that SBI-46 significantly inhibited the proliferation of AR+ CRPC cells but not AR- CRPC and normal immortalized prostate epithelial cells (RWPE1) or normal kidney cells (HEK-293 and VERO). Molecular analysis confirmed that SBI-46 downregulated the expressions of both AR+ and AR-splice variants (AR-SVs) in CRPC cells. Further studies revealed the downregulation of AR downstream (PSA) events in CRPC cells. The oral administration of SBI-46 abrogated the growth of C4-2B and 22Rv1 CRPC xenograft tumors that express AR or both AR and AR-SV in xenotransplanted nude mice models. Further, immunohistochemical analysis confirmed that SBI-46 inhibits AR signaling in xenografted tumor tissues. CONCLUSION These results demonstrate that SBI-46 is a potent agent that inhibits preclinical models of CRPC by downregulating the expressions of both AR and AR-SV. Furthermore, these results suggest that SBI-46 may be a potent compound for treating CRPC.
Collapse
Affiliation(s)
| | - Subhasish Tapadar
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Bocheng Wu
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Uttara Saran
- Rangel School of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | - Ashish Tyagi
- Rangel School of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | - Alexis Johnston
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - David A. Gaul
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Adegboyega K. Oyelere
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Chendil Damodaran
- Rangel School of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
8
|
Suzuki M, Fujimori H, Wakatsuki K, Manaka Y, Asai H, Hyodo M, Matsuno Y, Kusumoto-Matsuo R, Shiroishi M, Yoshioka KI. Genome destabilization-associated phenotypes arising as a consequence of therapeutic treatment are suppressed by Olaparib. PLoS One 2023; 18:e0281168. [PMID: 36706121 PMCID: PMC9882903 DOI: 10.1371/journal.pone.0281168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Malignancy is often associated with therapeutic resistance and metastasis, usually arising after therapeutic treatment. These include radio- and chemo-therapies, which cause cancer cell death by inducing DNA double strand breaks (DSBs). However, it is still unclear how resistance to these DSBs is induced and whether it can be suppressed. Here, we show that DSBs induced by camptothecin (CPT) and radiation jeopardize genome stability in surviving cancer cells, ultimately leading to the development of resistance. Further, we show that cytosolic DNA, accumulating as a consequence of genomic destabilization, leads to increased cGAS/STING-pathway activation and, ultimately, increased cell migration, a precursor of metastasis. Interestingly, these genomic destabilization-associated phenotypes were suppressed by the PARP inhibitor Olaparib. Recognition of DSBs by Rad51 and genomic destabilization were largely reduced by Olaparib, while the DNA damage response and cancer cell death were effectively increased. Thus, Olaparib decreases the risk of therapeutic resistance and cell migration of cells that survive radio- and CPT-treatments.
Collapse
Affiliation(s)
- Mafuka Suzuki
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Haruka Fujimori
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Kakeru Wakatsuki
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yuya Manaka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyou-ku, Tokyo, Japan
| | - Haruka Asai
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyou-ku, Tokyo, Japan
| | - Mai Hyodo
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Rika Kusumoto-Matsuo
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Ken-ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Özturan D, Morova T, Lack NA. Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells 2022; 11:898. [PMID: 35269520 PMCID: PMC8909478 DOI: 10.3390/cells11050898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.
Collapse
Affiliation(s)
- Doğancan Özturan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Nathan A. Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| |
Collapse
|
10
|
Erdmann É, Ould Madi Berthélémy P, Cottard F, Angel CZ, Schreyer E, Ye T, Morlet B, Negroni L, Kieffer B, Céraline J. Androgen receptor-mediated transcriptional repression targets cell plasticity in prostate cancer. Mol Oncol 2021; 16:2518-2536. [PMID: 34919781 PMCID: PMC9462842 DOI: 10.1002/1878-0261.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Androgen receptor (AR) signaling remains the key therapeutic target in the management of hormone‐naïve‐advanced prostate cancer (PCa) and castration‐resistant PCa (CRPC). Recently, landmark molecular features have been reported for CRPC, including the expression of constitutively active AR variants that lack the ligand‐binding domain. Besides their role in CRPC, AR variants lead to the expression of genes involved in tumor progression. However, little is known about the specificity of their mode of action compared with that of wild‐type AR (AR‐WT). We performed AR transcriptome analyses in an androgen‐dependent PCa cell line as well as cross‐analyses with publicly available RNA‐seq datasets and established that transcriptional repression capacity that was marked for AR‐WT was pathologically lost by AR variants. Functional enrichment analyses allowed us to associate AR‐WT repressive function to a panel of genes involved in cell adhesion and epithelial‐to‐mesenchymal transition. So, we postulate that a less documented AR‐WT normal function in prostate epithelial cells could be the repression of a panel of genes linked to cell plasticity and that this repressive function could be pathologically abrogated by AR variants in PCa.
Collapse
Affiliation(s)
- Éva Erdmann
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | | | - Félicie Cottard
- University of Freiburg - Albert - Ludwigs - Universität Freiburg, Germany
| | | | - Edwige Schreyer
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Tao Ye
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Bastien Morlet
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Luc Negroni
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Bruno Kieffer
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Jocelyn Céraline
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France.,Institut de Cancérologie de Strasbourg Europe (ICANS), Hôpitaux Universitaires de Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg - FMTS - Faculté de Médecine, Université de Strasbourg, France
| |
Collapse
|
11
|
Lu D, Song Y, Yu Y, Wang D, Liu B, Chen L, Li X, Li Y, Cheng L, Lv F, Zhang P, Xing Y. KAT2A-mediated AR translocation into nucleus promotes abiraterone-resistance in castration-resistant prostate cancer. Cell Death Dis 2021; 12:787. [PMID: 34381019 PMCID: PMC8357915 DOI: 10.1038/s41419-021-04077-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
Abiraterone, a novel androgen synthesis inhibitor, has been approved for castration-resistant prostate cancer (CRPC) treatment. However, most patients eventually acquire resistance to this agent, and the underlying mechanisms related to this resistance remain largely unelucidated. Lysine acetyltransferase 2 A (KAT2A) has been reported to enhance transcriptional activity for certain histone or non-histone proteins through the acetylation and post-translational modification of the androgen receptor (AR). Therefore, we hypothesised that KAT2A might play a critical role in the resistance of prostate tumours to hormonal treatment. In this study, we found that KAT2A expression was increased in abiraterone-resistant prostate cancer C4-2 cells (C4-2-AbiR). Consistently, elevated expression of KAT2A was observed in patients with prostate cancer exhibiting high-grade disease or biochemical recurrence following radical prostatectomy, as well as in those with poor clinical survival outcomes. Moreover, KAT2A knockdown partially re-sensitised C4-2-AbiR cells to abiraterone, whereas KAT2A overexpression promoted abiraterone resistance in parental C4-2 cells. Consistent with this finding, KAT2A knockdown rescued abiraterone sensitivity and inhibited the proliferation of C4-2-AbiR cells in a mouse model. Mechanistically, KAT2A directly acetylated the hinge region of the AR, and induced AR translocation from the cytoplasm to the nucleus, resulting in increased transcriptional activity of the AR-targeted gene prostate specific antigen (PSA) leading to resistance to the inhibitory effect of abiraterone on proliferation. Taken together, our findings demonstrate a substantial role for KAT2A in the regulation of post-translational modifications in AR affecting CRPC development, suggesting that targeting KAT2A might be a potential strategy for CRPC treatment.
Collapse
Affiliation(s)
- Dingheng Lu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Decai Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bing Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuexiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunxue Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Ma S, Quan P, Yu C, Fan X, Yang S, Jia W, Zhang L, Wang F, Liu F, Yang L, Qin W, Yang X. PHLDA3 exerts an antitumor function in prostate cancer by down-regulating Wnt/β-catenin pathway via inhibition of Akt. Biochem Biophys Res Commun 2021; 571:66-73. [PMID: 34303965 DOI: 10.1016/j.bbrc.2021.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/20/2022]
Abstract
Pleckstrin homology-like domain family A, member 3 (PHLDA3) is a novel tumor-related protein that mediates carcinogenesis of multiple cancers. However, the relevance of PHLDA3 in prostate cancer has not been explored. The purpose of this work was to illustrate the possible roles and mechanisms of PHLDA3 in prostate cancer. Our data showed strikingly lower abundance of PHLDA3 in prostate cancer, and that low levels of PHLDA3 in prostate cancer patients was associated with reduced survival. PHLDA3 was also weakly expressed in prostate cancer cells, and demethylation treatment dramatically up-regulated the expression level of PHLDA3. Up-regulation of PHLDA3 restrained proliferation, induced G1 cell cycle arrest, suppressed epithelial-mesenchymal transition of prostate cancer cells. In addition, up-regulation of PHLDA3 increased the sensitivity of prostate cancer cells to docetaxel In-depth research into the mechanism elucidated that PHLDA3 overexpression decreased the phosphorylation of Akt and suppressed the activation of Wnt/β-catenin signaling. Overexpression of constitutively active Akt strikingly abolished PHLDA3-mediated inactivation of Wnt/β-catenin pathway. A xenograft assay revealed that prostate cancer cells with PHLDA3 overexpression displayed reduced tumorigenicity in vivo. Collectively, these data document that PHLDA3 exerts an outstanding cancer-inhibiting role in prostate cancer by down-regulating Wnt/β-catenin pathway via the inhibition of Akt. This work highlights PHLDA3 as a novel anticancer target for prostate cancer.
Collapse
Affiliation(s)
- Shuaijun Ma
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Penghe Quan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Changjiang Yu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaozheng Fan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhan Yang
- The Santa Catalina School, 1500 Mark Thomas Drive, Monterey, CA, 93940, USA
| | - Weijing Jia
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Longlong Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lijun Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaojian Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
13
|
Gray SG. Emerging avenues in immunotherapy for the management of malignant pleural mesothelioma. BMC Pulm Med 2021; 21:148. [PMID: 33952230 PMCID: PMC8097826 DOI: 10.1186/s12890-021-01513-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of immunotherapy in cancer is now well-established, and therapeutic options such as checkpoint inhibitors are increasingly being approved in many cancers such as non-small cell lung cancer (NSCLC). Malignant pleural mesothelioma (MPM) is a rare orphan disease associated with prior exposure to asbestos, with a dismal prognosis. Evidence from clinical trials of checkpoint inhibitors in this rare disease, suggest that such therapies may play a role as a treatment option for a proportion of patients with this cancer. MAIN TEXT While the majority of studies currently focus on the established checkpoint inhibitors (CTLA4 and PD1/PDL1), there are many other potential checkpoints that could also be targeted. In this review I provide a synopsis of current clinical trials of immunotherapies in MPM, explore potential candidate new avenues that may become future targets for immunotherapy and discuss aspects of immunotherapy that may affect the clinical outcomes of such therapies in this cancer. CONCLUSIONS The current situation regarding checkpoint inhibitors in the management of MPM whilst encouraging, despite impressive durable responses, immune checkpoint inhibitors do not provide a long-term benefit to the majority of patients with cancer. Additional studies are therefore required to further delineate and improve our understanding of both checkpoint inhibitors and the immune system in MPM. Moreover, many new potential checkpoints have yet to be studied for their therapeutic potential in MPM. All these plus the existing checkpoint inhibitors will require the development of new biomarkers for patient stratification, response and also for predicting or monitoring the emergence of resistance to these agents in MPM patients. Other potential therapeutic avenues such CAR-T therapy or treatments like oncolytic viruses or agents that target the interferon pathway designed to recruit more immune cells to the tumor also hold great promise in this hard to treat cancer.
Collapse
Affiliation(s)
- Steven G Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, CPL 30, TCDSJ Cancer Institute, St James's Hospital, Dublin, D08 RX0X, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biology, Technical University of Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
PRMT5: a putative oncogene and therapeutic target in prostate cancer. Cancer Gene Ther 2021; 29:264-276. [PMID: 33854218 DOI: 10.1038/s41417-021-00327-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) was discovered two decades ago. The first decade focused on the biochemical characterization of PRMT5 as a regulator of many cellular processes in a healthy organism. However, over the past decade, evidence has accumulated to suggest that PRMT5 may function as an oncogene in multiple cancers via both epigenetic and non-epigenetic mechanisms. In this review, we focus on recent progress made in prostate cancer, including the role of PRMT5 in the androgen receptor (AR) expression and signaling and DNA damage response, particularly DNA double-strand break repair. We also discuss how PRMT5-interacting proteins that are considered PRMT5 cofactors may cooperate with PRMT5 to regulate PRMT5 activity and target gene expression, and how PRMT5 can interact with other epigenetic regulators implicated in prostate cancer development and progression. Finally, we suggest that targeting PRMT5 may be employed to develop multiple therapeutic approaches to enhance the treatment of prostate cancer.
Collapse
|
15
|
Liu Q, Liu G, Martin DT, Xing YT, Weiss RM, Qi J, Kang J. Genome-wide association analysis reveals regulation of at-risk loci by DNA methylation in prostate cancer. Asian J Androl 2021; 23:472-478. [PMID: 33762478 PMCID: PMC8451484 DOI: 10.4103/aja.aja_20_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Epigenetic changes are potentially important for the ontogeny and progression of tumors but are not usually studied because of the complexity of analyzing transcript regulation resulting from epigenetic alterations. Prostate cancer (PCa) is characterized by variable clinical manifestations and frequently unpredictable outcomes. We performed an expression quantitative trait loci (eQTL) analysis to identify the genomic regions that regulate gene expression in PCa and identified a relationship between DNA methylation and clinical information. Using multi-level information published in The Cancer Genome Atlas, we performed eQTL-based analyses on DNA methylation and gene expression. To better interpret these data, we correlated loci and clinical indexes to identify the important loci for both PCa development and progression. Our data demonstrated that although only a small proportion of genes are regulated via DNA methylation in PCa, these genes are enriched in important cancer-related groups. In addition, single nucleotide polymorphism analysis identified the locations of CpG sites and genes within at-risk loci, including the 19q13.2–q13.43 and 16q22.2–q23.1 loci. Further, an epigenetic association study of clinical indexes detected risk loci and pyrosequencing for site validation. Although DNA methylation-regulated genes across PCa samples are a small proportion, the associated genes play important roles in PCa carcinogenesis.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Urology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gang Liu
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Darryl T Martin
- Department of Urology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yu-Tong Xing
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Robert M Weiss
- Department of Urology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jun Qi
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian Kang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
16
|
Lemos C, Schulze VK, Baumgart SJ, Nevedomskaya E, Heinrich T, Lefranc J, Bader B, Christ CD, Briem H, Kuhnke LP, Holton SJ, Bömer U, Lienau P, von Nussbaum F, Nising CF, Bauser M, Hägebarth A, Mumberg D, Haendler B. The potent AMPK inhibitor BAY-3827 shows strong efficacy in androgen-dependent prostate cancer models. Cell Oncol (Dordr) 2021; 44:581-594. [PMID: 33492659 DOI: 10.1007/s13402-020-00584-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE 5' adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor. METHODS High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor. Cell proliferation and mechanistic assays, as well as gene expression analysis and chromatin immunoprecipitation were used to investigate the cellular impact as well as the crosstalk between lipid metabolism and androgen signaling in prostate cancer models. Also, fatty acid turnover was determined by examining lipid droplet formation. RESULTS We identified BAY-3827 as a novel and potent AMPK inhibitor with additional activity against ribosomal 6 kinase (RSK) family members. It displays strong anti-proliferative effects in androgen-dependent prostate cancer cell lines. Analysis of genes involved in AMPK signaling revealed that the expression of those encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), fatty acid synthase (FASN) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), all of which are involved in lipid metabolism, was strongly upregulated by androgen in responsive models. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) analysis identified several androgen receptor (AR) binding peaks in the HMGCR and PFKFB2 genes. BAY-3827 strongly down-regulated the expression of lipase E (LIPE), cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) and serine-threonine kinase AKT3 in responsive prostate cancer cell lines. Also, the expression of members of the carnitine palmitoyl-transferase 1 (CPT1) family was inhibited by BAY-3827, and this was paralleled by impaired lipid flux. CONCLUSIONS The availability of the potent inhibitor BAY-3827 will contribute to a better understanding of the role of AMPK signaling in cancer, especially in prostate cancer.
Collapse
Affiliation(s)
- Clara Lemos
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Volker K Schulze
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Simon J Baumgart
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Bayer US LLC, Cambridge, MA, USA
| | | | - Tobias Heinrich
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Julien Lefranc
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Benjamin Bader
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Clara D Christ
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Hans Briem
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Lara P Kuhnke
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Simon J Holton
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Ulf Bömer
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Philip Lienau
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Carl F Nising
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Marcus Bauser
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Janssen Pharmaceuticals, Beerse, Belgium
| | - Andrea Hägebarth
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Bernard Haendler
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.
| |
Collapse
|
17
|
Kumar Mamidi TK, Wu J, Hicks C. Elucidation of the Genomic-Epigenomic Interaction Landscape of Aggressive Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6641429. [PMID: 33511206 PMCID: PMC7825361 DOI: 10.1155/2021/6641429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Majority of prostate cancer (PCa) deaths are attributed to localized high-grade aggressive tumours which progress rapidly to metastatic disease. A critical unmet need in clinical management of PCa is discovery and characterization of the molecular drivers of aggressive tumours. The development and progression of aggressive PCa involve genetic and epigenetic alterations occurring in the germline, somatic (tumour), and epigenomes. To date, interactions between genes containing germline, somatic, and epigenetic mutations in aggressive PCa have not been characterized. The objective of this investigation was to elucidate the genomic-epigenomic interaction landscape in aggressive PCa to identify potential drivers aggressive PCa and the pathways they control. We hypothesized that aggressive PCa originates from a complex interplay between genomic (both germline and somatic mutations) and epigenomic alterations. We further hypothesized that these complex arrays of interacting genomic and epigenomic factors affect gene expression, molecular networks, and signaling pathways which in turn drive aggressive PCa. METHODS We addressed these hypotheses by performing integrative data analysis combining information on germline mutations from genome-wide association studies with somatic and epigenetic mutations from The Cancer Genome Atlas using gene expression as the intermediate phenotype. RESULTS The investigation revealed signatures of genes containing germline, somatic, and epigenetic mutations associated with aggressive PCa. Aberrant DNA methylation had effect on gene expression. In addition, the investigation revealed molecular networks and signalling pathways enriched for germline, somatic, and epigenetic mutations including the STAT3, PTEN, PCa, ATM, AR, and P53 signalling pathways implicated in aggressive PCa. CONCLUSIONS The study demonstrated that integrative analysis combining diverse omics data is a powerful approach for the discovery of potential clinically actionable biomarkers, therapeutic targets, and elucidation of oncogenic interactions between genomic and epigenomic alterations in aggressive PCa.
Collapse
Affiliation(s)
- Tarun Karthik Kumar Mamidi
- Center for Computational Genomics and Data Science, Departments of Pediatrics and Pathology, University of Alabama–Birmingham School of Medicine, Birmingham, Alabama 35233, USA
| | - Jiande Wu
- Department of Genetics and the Bioinformatics and Genomics Program, Louisiana State University Health Sciences Center, School of Medicine, 533 Bolivar Street, New Orleans, LA 70112-1393, USA
| | - Chindo Hicks
- Department of Genetics and the Bioinformatics and Genomics Program, Louisiana State University Health Sciences Center, School of Medicine, 533 Bolivar Street, New Orleans, LA 70112-1393, USA
| |
Collapse
|
18
|
Lee KH, Kim BC, Jeong CW, Ku JH, Kim HH, Kwak C. MLL5, a histone modifying enzyme, regulates androgen receptor activity in prostate cancer cells by recruiting co-regulators, HCF1 and SET1. BMB Rep 2020. [PMID: 33050986 PMCID: PMC7781910 DOI: 10.5483/bmbrep.2020.53.12.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In prostate cancer, the androgen receptor (AR) transcription factor is a major regulator of cell proliferation and metastasis. To identify new AR regulators, we focused on Mixed lineage leukemia 5 (MLL5), a histone-regulating enzyme, because significantly higher MLL5 expression was detected in prostate cancer tissues than in matching normal tissues. When we expressed shRNAs targeting MLL5 gene in prostate cancer cell line, the growth rate and AR activity were reduced compared to those in control cells, and migration ability of the knockdown cells was reduced significantly. To determine the molecular mechanisms of MLL5 on AR activity, we proved that AR physically interacted with MLL5 and other co-factors, including SET-1 and HCF-1, using an immunoprecipitation method. The chromatin immunoprecipitation analysis showed reduced binding of MLL5, co-factors, and AR enzymes to AR target gene promoters in MLL5 shRNA-expressing cells. Histone H3K4 methylation on the AR target gene promoters was reduced, and H3K9 methylation at the same site was increased in MLL5 knockdown cells. Finally, xenograft tumor formation revealed that reduction of MLL5 in prostate cancer cells retarded tumor growth. Our results thus demonstrate the important role of MLL5 as a new epigenetic regulator of AR in prostate cancer.
Collapse
Affiliation(s)
- Kyoung-Hwa Lee
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea
| | - Byung-Chan Kim
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
19
|
Nagata Y, Goto T, Jiang G, Teramoto Y, Miyamoto H. 5α-Reductase Inhibitors Do Not Prevent the Development and Progression of Urothelial Cancer: In Vitro Evidence. Bladder Cancer 2020. [DOI: 10.3233/blc-200380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND: Androgen receptor (AR) activation has been implicated in the pathogenesis of urothelial cancer. However, it remains controversial whether 5α-reductase inhibitors (5α-RIs), which are known for blocking the conversion of testosterone to the more potent androgen dihydrotestosterone and often prescribed for the treatment of, for instance, benign prostatic hyperplasia, contribute to preventing the development of bladder cancer. OBJECTIVE: To determine the role of 5α-RI therapy in urothelial tumorigenesis and tumor progression, using cell line models. METHODS: In a human non-neoplastic urothelial SVHUC subline stably expressing a full-length wild-type human AR (SVHUC-AR) with carcinogen/MCA challenge and human bladder cancer lines, we assessed the effects of three 5α-RIs, dutasteride (up to 100 nM), finasteride (up to 500 nM), and epristeride (up to 5μM), on neoplastic/malignant transformation and cell growth, respectively. RESULTS: In AR-positive bladder cancer UMUC3 and 5637-AR cells, an AR antagonist bicalutamide significantly inhibited their proliferation, whereas three 5α-RIs failed to do. Similarly, these 5α-RIs did not significantly inhibit the migration of bladder cancer cells induced by the treatment of testosterone which could be metabolized into dihydrotestosterone in culture medium. In MCA-SVHUC-AR cells, induction of their neoplastic transformation by testosterone, which was prevented by bicalutamide, was confirmed. However, no significant inhibitory effects of 5α-RIs on the neoplastic transformation of AR-positive urothelial cells treated with or without testosterone were observed. CONCLUSIONS: Using in vitro models for urothelial cancer, 5α-RI treatment even at supra-pharmacological doses was thus found to have no significant impact on the prevention of both tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Guiyang Jiang
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
20
|
Liu B, Kumar R, Chao HP, Mehmood R, Ji Y, Tracz A, Tang DG. Evidence for context-dependent functions of KDM5B in prostate development and prostate cancer. Oncotarget 2020; 11:4243-4252. [PMID: 33245716 PMCID: PMC7679033 DOI: 10.18632/oncotarget.27818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths worldwide. Prostate tumorigenesis and PCa progression involve numerous genetic as well as epigenetic perturbations. Histone modification represents a fundamental epigenetic mechanism that regulates diverse cellular processes, and H3K4 methylation, one such histone modification associated with active transcription, can be reversed by dedicated histone demethylase KDM5B (JARID1B). Abnormal expression and functions of KDM5B have been implicated in several cancer types including PCa. Consistently, our bioinformatics analysis reveals that the KDM5B mRNA levels are upregulated in PCa compared to benign prostate tissues, and correlate with increased tumor grade and poor patient survival, supporting an oncogenic function of KDM5B in PCa. Surprisingly, however, when we generated prostate-specific conditional Kdm5b knockout mice using probasin (Pb) promoter-driven Cre: loxP system, we observed that Kdm5b deletion did not affect normal prostate development but instead induced mild hyperplasia. These results suggest that KDM5B may possess context-dependent roles in normal prostate development vs. PCa development and progression.
Collapse
Affiliation(s)
- Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
- These authors contributed equally to this work
| | - Rahul Kumar
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally to this work
| | - Hseuh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Rashid Mehmood
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Takhasusi Street, Riyadh, Saudi Arabia
| | - Yibing Ji
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
| | - Amanda Tracz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
| | - Dean G. Tang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
21
|
Basaran GS, Bekci H, Baldemir A, Ilgun S, Cumaoglu A. Momordica charantia Seed and Aryl Extracts Potentiate Growth Inhibition and Apoptosis by Dual Blocking of PI3K/AKT and MAPK Pathways as a Downstream Target of EGFR Signaling in Breast Cancer Cells. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190712214922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background and Objective:
Herbal extracts and plant compounds are increasingly becoming
of interest for their therapeutic potential in various cancer types. Momordica charantia is well
known for its anti-diabetic, anti-inflammatory, and anti-cancer properties.
Methods:
In the present study, we investigated the antiproliferative and pro-apoptotic effects of
Momordica charantia seed and aryl extracts on breast cancer cells and explored the underlying
molecular mechanisms.
Results:
Our results showed that both extract significantly inhibited the growth of MCF-7 and MDA
MB-231 cells in a concentration-dependent manner, and induced apoptosis by upregulation of caspase
9 and caspase 3 mRNA levels. In addition, in different incubation time, both extract evidently inhibited
EGF and induced EGFR phosphorylation/activation in both cell lines. Moreover, Momordica
charantia aryl and seed extracts inhibited phosphorylation/activation of PI3K/AKT and MAPK
(ERK and P38) pathways in both cell lines.
Conclusion:
The current study clearly demonstrates that the Momordica charantia aryl and seed extracts
have the potential to exert its cytotoxic effect on breast cancer cells by a mechanism involving
inhibition of EGFR and EGRF related pathways with the induction of apoptosis. The overall finding
demonstrates that this plant, especially seed extract, could be a potential source of new anticancer
compounds for possible drug development against cancer.
Collapse
Affiliation(s)
- Guzide Satir Basaran
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hatice Bekci
- Department of Food Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Ayse Baldemir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Selen Ilgun
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ahmet Cumaoglu
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
Matthews KA, Senagbe KM, Nötzel C, Gonzales CA, Tong X, Rijo-Ferreira F, Bhanu NV, Miguel-Blanco C, Lafuente-Monasterio MJ, Garcia BA, Kafsack BFC, Martinez ED. Disruption of the Plasmodium falciparum Life Cycle through Transcriptional Reprogramming by Inhibitors of Jumonji Demethylases. ACS Infect Dis 2020; 6:1058-1075. [PMID: 32272012 PMCID: PMC7748244 DOI: 10.1021/acsinfecdis.9b00455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Little
is known about the role of the three Jumonji C (JmjC) enzymes
in Plasmodium falciparum (Pf). Here,
we show that JIB-04 and other established inhibitors of mammalian
JmjC histone demethylases kill asexual blood stage parasites and are
even more potent at blocking gametocyte development and gamete formation.
In late stage parasites, JIB-04 increased levels of trimethylated
lysine residues on histones, suggesting the inhibition of P. falciparum Jumonji demethylase activity. These epigenetic
defects coincide with deregulation of invasion, cell motor, and sexual
development gene programs, including gene targets coregulated by the
PfAP2-I transcription factor and chromatin-binding factor, PfBDP1.
Mechanistically, we demonstrate that PfJmj3 converts 2-oxoglutarate
to succinate in an iron-dependent manner consistent with mammalian
Jumonji enzymes, and this catalytic activity is inhibited by JIB-04
and other Jumonji inhibitors. Our pharmacological studies of Jumonji
activity in the malaria parasite provide evidence that inhibition
of these enzymatic activities is detrimental to the parasite.
Collapse
Affiliation(s)
- Krista A. Matthews
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Kossi M. Senagbe
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Christopher Nötzel
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Christopher A. Gonzales
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Xinran Tong
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Natarajan V. Bhanu
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, Pennsylvania 19104, United States
| | - Celia Miguel-Blanco
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, P.T.M. Severo Ochoa, Tres Cantos, Madrid 28760, Spain
| | | | - Benjamin A. Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, Pennsylvania 19104, United States
| | - Björn F. C. Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Elisabeth D. Martinez
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
23
|
Verma HK, Kampalli PK, Lakkakula S, Chalikonda G, Bhaskar LV, Pattnaik S. A Retrospective Look at Anti-EGFR Agents in Pancreatic Cancer Therapy. Curr Drug Metab 2020; 20:958-966. [DOI: 10.2174/1389200220666191122104955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Background:The introduction of Monoclonal Antibodies (mAbs) and small-molecule Tyrosine Kinase Inhibitors (TKIs) that target the Epidermal Growth Factor Receptor (EGFR), marks a huge step forward in the Pancreatic Cancer (PC) therapy. However, anti-EGFR therapy is found to be successful only in a fraction of patients. Although anti-EGFR agents have shown considerable clinical promise, a serious adverse event associated with anti- EGFR therapy has been challenging. At this juncture, there is still more to be done in the search for effective predictive markers with therapeutic applicability.Methods:A focused literature search was conducted to summarize the existing evidence on anti-EGFR agents in pancreatic cancer therapy.Results:This review discusses various anti-EGFR agents currently in use for PC therapy and potential adverse effects associated with it. Existing evidence on EGFR TKIs demonstrated better tolerant effects and outcomes with multiple toxic regimens. Anti-EGFR therapy in combination with chemotherapy is necessary to achieve the best clinical outcomes.Conclusion:Future prospective studies on the identification of additional biological agents and novel anti-EGFR agents are warranted.
Collapse
Affiliation(s)
- Henu K. Verma
- Stem Cell Laboratory, Institute of Endocrinology and Oncology, Naples, Italy
| | | | | | - Gayathri Chalikonda
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta GA-30322, United States
| | | | - Smaranika Pattnaik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, India
| |
Collapse
|
24
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
25
|
Sha J, Han Q, Chi C, Zhu Y, Pan J, Dong B, Huang Y, Xia W, Xue W. Upregulated KDM4B promotes prostate cancer cell proliferation by activating autophagy. J Cell Physiol 2019; 235:2129-2138. [PMID: 31468537 DOI: 10.1002/jcp.29117] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Castration-resistant prostate cancer (CRPC) causes most of the deaths in patients with prostate cancer (PCa). The androgen receptor (AR) axis plays an important role in castration resistance. Emerging studies showed that the lysine demethylase KDM4B is a key molecule in AR signaling and turnover, and autophagy plays an important role in CRPC. However, little is known about whether KDM4B promotes CRPC progression by regulating autophagy. Here we used an androgen-independent LNCaP (LNCaP-AI) cell line to assay aberrant KDM4B expression using qPCR and western blot analysis and investigated the function of KDM4B in regulating cell proliferation. We found that KDM4B was markedly increased in LNCaP-AI cells compared with LNCaP cells. KDM4B level was significantly correlated with the Gleason score in PCa tissues. In vitro, KDM4B overexpression in CRPC cells promoted cell proliferation, whereas knockdown of KDM4B significantly inhibited cell proliferation. Upregulated KDM4B contributed to activate Wnt/β-catenin signaling and autophagy. Moreover, KDM4B activated autophagy by regulating the Wnt/β-catenin signaling. Finally, we demonstrated that autophagy inhibition attenuated KDM4B-induced CRPC cell proliferation. Our results provided novel insights into the function of KDM4B-driven CRPC development and indicated that KDM4B may be served as a potential target for CRPC therapy.
Collapse
Affiliation(s)
- Jianjun Sha
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing Han
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Chenfei Chi
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2019; 9:705. [PMID: 31428579 PMCID: PMC6687838 DOI: 10.3389/fonc.2019.00705] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Growing evidence has demonstrated that epigenetic dysregulation is a common pathological feature in human cancer cells. Global alterations in the epigenetic landscape are prevalent in malignant cells across different solid tumors including, prostate cancer, non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In particular, DNA hypomethylation and histone hypoacetylation have been observed in acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification known to be involved in the regulation of a broad range of biological processes, including the formation of transcriptionally silent heterochromatin. Following the observation of its aberrant methylation status in hematological malignancy and several other cancer phenotypes, recent studies have associated H3K9me3 levels with patient outcome and highlighted key molecular mechanisms linking H3K9me3 profile with AML etiology in a number of large-scale meta-analysis. Consequently, the development and application of small molecule inhibitors which target the histone methyltransferases or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in AML represents an advancing area of ongoing study. Here, we provide a comprehensive review on how this particular epigenetic mark is regulated within cells and its emerging role as a potential therapeutic target in AML, along with an update on the current research into advancing the generation of more potent and selective inhibitors against known H3K9 methyltransferases and demethylases.
Collapse
Affiliation(s)
- Laura Monaghan
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew E. Massett
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Alex Hoose
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Li S, Yin L, Huang K, Zhao Y, Zhang H, Cai C, Xu Y, Huang L, Wang X, Lan T, Li H, Ma P. Downregulation of DACT-2 by Promoter Methylation and its Clinicopathological Significance in Prostate Cancer. J Cancer 2019; 10:1755-1763. [PMID: 31205531 PMCID: PMC6548005 DOI: 10.7150/jca.28577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
Backgrounds: Dapper homolog (DACT) 2, a member of DACT gene family, is frequently down-regulated in various malignancies and linked to tumor progression. However, the regulatory mechanism of DACT-2 expression and its biological role in human prostate cancer (PCa) remains elusive. Here, we investigated the expression and an epigenetic change of DACT-2 in prostate cancer, and determined if these findings were correlated with clinicopathologic characteristics of PCa. Methods: The expression profile of DACT-2 of was detected by qRT-PCR, Western blotting, and immunohistochemistry in four prostate cell lines (RWPE-1, LNCaP, PC-3 and DU145), 56 cases of frozen prostate tissues (forty-seven primary prostate carcinomas, nine paired noncancerous and cancerous prostate tissues) and a tissue microarray sets including 100 paraffin-embedded prostate samples (3 normal tissues, 2 cases of adjacent tissues and 95 cases of cancer). Subsequently, the regulatory mechanism of DACT-2 down-regulation was investigated through methylation-specific PCR (MSP) and bisulfite sequencing (BSP). The role of DACT-2 in prostate cancer cell migration and invasion was respectively examined by wound healing and transwell assay. After 5-aza-2'-deoxycytidine treatment of prostate cancer cells, qRT-PCR was used to detect whether the expression of DACT-2 gene mRNA in the cells recovered. Results: Immunohistochemical results shown that the DACT-2 protein was strongly (3+) expressed in the cytoplasm of all 5 noncancerous tissues and 12.7% (12/95) prostate cancer (PCa) tissues. Whereas 68.4% (65/95) PCa samples and 18.9% (18/95) PCa tissues respectively displayed weakly (1+) expressed and moderately (2+) expressed. In addition, DACT-2 expression was negatively associated with Gleason score in tumor specimens (p=0.029). What's more, down-regulation and promoter methylation of DACT-2 were observed in 68.1% (32/47) frozen PCa tissues and all three prostate cancer cell lines. And, the expression of DACT-2 mRNA was restored by the treatment of demethylated drug 5-aza-2'-deoxycytidine in all prostate cancer lines. Prostate cancer cells invasion and migration were significantly suppressed by ectopic expression of DACT-2 in vitro. Conclusions: Our study provides evidence that DACT-2 may be a useful biomarker for distinguishing prostate tumor tissues from non-cancerous samples and a potential target for epigenetic silencing in primary prostate Cancer.
Collapse
Affiliation(s)
- Shibao Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Lingyu Yin
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kai Huang
- Department of Urology, Northern Jiangsu People's hospital, Yangzhou 225001 China
| | - Yao Zhao
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Haoliang Zhang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Chenchen Cai
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yinhai Xu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Lingyan Huang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaozhou Wang
- The center of functional experiment, Xuzhou Medical University, Xuzhou Jiangsu 221004, China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongchun Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Ping Ma
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
28
|
Tarasov VA, Naboka AV, Makhotkin MA, Chikunov IE, Tyutyakina MG, Chebotarev DA, Cherkasova EN, Kogan MI, Chibichyan MB, Matishov DG. The Influence of microRNAs in Regulation of Hormone Dependence in Prostate Cancer Cells. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Wang S, Ekoue DN, Raj GV, Kittler R. Targeting the turnover of oncoproteins as a new avenue for therapeutics development in castration-resistant prostate cancer. Cancer Lett 2018; 438:86-96. [PMID: 30217566 PMCID: PMC6186492 DOI: 10.1016/j.canlet.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
The current therapeutic armamentarium for castration-resistant prostate cancer (CRPC) includes second-generation agents such as the Androgen Receptor (AR) inhibitor enzalutamide and the androgen synthesis inhibitor abiraterone acetate, immunotherapies like sipuleucel-T, chemotherapies including docetaxel and cabazitaxel and the radiopharmaceutical radium 223 dichloride. However, relapse of CRPC resistant to these therapeutic modalities occur rapidly. The mechanisms of resistance to these treatments are complex, including specific mutations or alternative splicing of oncogenic proteins. An alternative approach to treating CRPC may be to target the turnover of these molecular drivers of CRPC. In this review, the mechanisms by which protein stability of several oncoproteins such as AR, ERG, GR, CYP17A1 and MYC, will be discussed, as well as how these findings could be translated into novel therapeutic agents.
Collapse
Affiliation(s)
- Shan Wang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Dede N Ekoue
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Ferrari AC, Alumkal JJ, Stein MN, Taplin ME, Babb J, Barnett ES, Gomez-Pinillos A, Liu X, Moore D, DiPaola R, Beer TM. Epigenetic Therapy with Panobinostat Combined with Bicalutamide Rechallenge in Castration-Resistant Prostate Cancer. Clin Cancer Res 2018; 25:52-63. [PMID: 30224345 DOI: 10.1158/1078-0432.ccr-18-1589] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE This study assesses the action of panobinostat, a histone deacetylase inhibitor (HDACI), in restoring sensitivity to bicalutamide in a castration-resistant prostate cancer (CRPC) model and the efficacy and safety of the panobinostat/bicalutamide combination in CRPC patients resistant to second-line antiandrogen therapy (2ndLAARx). PATIENTS AND METHODS The CWR22PC xenograft and isogenic cell line were tested for drug interactions on tumor cell growth and on the androgen receptor (AR), AR-splice variant7, and AR targets. A phase I trial had a 3 × 3 panobinostat dose-escalation design. The phase II study randomized 55 patients to panobinostat 40 mg (A arm) or 20 mg (B arm) triweekly ×2 weeks with bicalutamide 50 mg/day in 3-week cycles. The primary endpoint was to determine the percentage of radiographic progression-free (rPF) patients at 36 weeks versus historic high-dose bicalutamide. RESULTS In the model, panobinostat/bicalutamide demonstrated synergistic antitumor effect while reducing AR activity. The dose-limiting toxicity was not reached. The probability of remaining rPF exceeded protocol-specified 35% in the A arm and 47.5% and 38.5% in the B arm. The probabilities of remaining rPF were 47.5% in the A arm and 38.5% in the B arm, exceeding the protocol-specified threshold of 35%. A arm/B arm: adverse events (AE), 62%/19%; treatment stopped for AEs, 27.5%/11.5%; dose reduction required, 41%/4%; principal A-arm grade ≥3 AEs, thrombocytopenia (31%) and fatigue (14%). CONCLUSIONS The 40 mg panobinostat/bicalutamide regimen increased rPF survival in CRPC patients resistant to 2ndLAARx. Panobinostat toxicity was tolerable with dose reductions. Epigenetic HDACI therapy reduces AR-mediated resistance to bicalutamide in CRPC models with clinical benefit in patients. The combination merits validation using a second-generation antiandrogen.
Collapse
Affiliation(s)
- Anna C Ferrari
- Icahn School of Medicine Mount Sinai, New York, New York.
| | | | - Mark N Stein
- Columbia University Medical Center, New York, New York
| | | | - James Babb
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Ethan S Barnett
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | - Xiaomei Liu
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Dirk Moore
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Robert DiPaola
- University of Kentucky College of Medicine, Lexington, Kentucky
| | | |
Collapse
|
31
|
Inamura K. Prostatic cancers: understanding their molecular pathology and the 2016 WHO classification. Oncotarget 2018; 9:14723-14737. [PMID: 29581876 PMCID: PMC5865702 DOI: 10.18632/oncotarget.24515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that prostatic cancers represent a group of histologically and molecularly heterogeneous diseases with variable clinical courses. In accordance with the increased knowledge of their clinicopathologies and genetics, the World Health Organization (WHO) classification of prostatic cancers has been revised. Additionally, recent data on their comprehensive molecular characterization have increased our understanding of the genomic basis of prostatic cancers and enabled us to classify them into subtypes with distinct molecular pathologies and clinical features. Our increased understanding of the molecular pathologies of prostatic cancers has permitted their evolution from a poorly understood, heterogeneous group of diseases with variable clinical courses to characteristic molecular subtypes that allow the implementation of personalized therapies and better patient management. This review provides perspectives on the new 2016 WHO classification of prostatic cancers as well as recent knowledge of their molecular pathologies. The WHO classification of prostatic cancers will require additional revisions to allow for reliable and clinically meaningful cancer diagnoses as a better understanding of their molecular characteristics is obtained.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
32
|
AR Signaling in Human Malignancies: Prostate Cancer and Beyond. Cancers (Basel) 2018; 10:cancers10010022. [PMID: 29346310 PMCID: PMC5789372 DOI: 10.3390/cancers10010022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
The notion that androgens and androgen receptor (AR) signaling are the hallmarks of prostate cancer oncogenesis and disease progression is generally well accepted. What is more poorly understood is the role of AR signaling in other human malignancies. This special issue of Cancers initially reviews the role of AR in advanced prostate cancer, and then explores the potential importance of AR signaling in other epithelial malignancies. The first few articles focus on the use of novel AR-targeting therapies in castration-resistant prostate cancer and the mechanisms of resistance to novel antiandrogens, and they also outline the interaction between AR and other cellular pathways, including PI3 kinase signaling, transcriptional regulation, angiogenesis, stromal factors, Wnt signaling, and epigenetic regulation in prostate cancer. The next several articles review the possible role of androgens and AR signaling in breast cancer, bladder cancer, salivary gland cancer, and hepatocellular carcinoma, as well as the potential treatment implications of using antiandrogen therapies in these non-prostatic malignancies.
Collapse
|
33
|
Baumgart SJ, Haendler B. Exploiting Epigenetic Alterations in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18051017. [PMID: 28486411 PMCID: PMC5454930 DOI: 10.3390/ijms18051017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.
Collapse
Affiliation(s)
- Simon J Baumgart
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|