1
|
CD147 a direct target of miR-146a supports energy metabolism and promotes tumor growth in ALK+ ALCL. Leukemia 2022; 36:2050-2063. [PMID: 35676454 PMCID: PMC9343252 DOI: 10.1038/s41375-022-01617-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
We recently reported that miR-146a is differentially expressed in ALK+ and ALK− anaplastic large cell lymphoma (ALCL). In this study, the downstream targets of miR-146a in ALK+ ALCL were investigated by transcriptome analysis, identifying CD147 as potential target gene. Because CD147 is differentially expressed in ALK+ ALCL versus ALK− ALCL and normal T cells, this gene emerged as a strong candidate for the pathogenesis of this tumor. Here we demonstrate that CD147 is a direct target of miR-146 and contributes to the survival and proliferation of ALK+ ALCL cells in vitro and to the engraftment and tumor growth in vivo in an ALK+ ALCL-xenotransplant mouse model. CD147 knockdown in ALK+ ALCL cells resulted in loss of monocarboxylate transporter 1 (MCT1) expression, reduced glucose consumption and tumor growth retardation, as demonstrated by [18F]FDG-PET/MRI analysis. Investigation of metabolism in vitro and in vivo supported these findings, revealing reduced aerobic glycolysis and increased basal respiration in CD147 knockdown. In conclusion, our findings indicate that CD147 is of vital importance for ALK+ ALCL to maintain the high energy demand of rapid cell proliferation, promoting lactate export, and tumor growth. Furthermore, CD147 has the potential to serve as a novel therapeutic target in ALK+ ALCL, and warrants further investigation.
Collapse
|
2
|
Wang Y, He J, Xu M, Xue Q, Zhu C, Liu J, Zhang Y, Shi W. Holistic View of ALK TKI Resistance in ALK-Positive Anaplastic Large Cell Lymphoma. Front Oncol 2022; 12:815654. [PMID: 35211406 PMCID: PMC8862178 DOI: 10.3389/fonc.2022.815654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase expressed at early stages of normal development and in various cancers including ALK-positive anaplastic large cell lymphoma (ALK+ ALCL), in which it is the main therapeutic target. ALK tyrosine kinase inhibitors (ALK TKIs) have greatly improved the prognosis of ALK+ALCL patients, but the emergence of drug resistance is inevitable and limits the applicability of these drugs. Although various mechanisms of resistance have been elucidated, the problem persists and there have been relatively few relevant clinical studies. This review describes research progress on ALK+ ALCL including the application and development of new therapies, especially in relation to drug resistance. We also propose potential treatment strategies based on current knowledge to inform the design of future clinical trials.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Jing He
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingfeng Xue
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cindy Zhu
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Juan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine Hypoxia and Epigenetic Programming in Lung Development and Disease. Biomedicines 2021; 9:944. [PMID: 34440150 PMCID: PMC8394854 DOI: 10.3390/biomedicines9080944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Clinically, intrauterine hypoxia is the foremost cause of perinatal morbidity and developmental plasticity in the fetus and newborn infant. Under hypoxia, deviations occur in the lung cell epigenome. Epigenetic mechanisms (e.g., DNA methylation, histone modification, and miRNA expression) control phenotypic programming and are associated with physiological responses and the risk of developmental disorders, such as bronchopulmonary dysplasia. This developmental disorder is the most frequent chronic pulmonary complication in preterm labor. The pathogenesis of this disease involves many factors, including aberrant oxygen conditions and mechanical ventilation-mediated lung injury, infection/inflammation, and epigenetic/genetic risk factors. This review is focused on various aspects related to intrauterine hypoxia and epigenetic programming in lung development and disease, summarizes our current knowledge of hypoxia-induced epigenetic programming and discusses potential therapeutic interventions for lung disease.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| |
Collapse
|
4
|
Mueller S, Dennison G, Liu S. An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6930. [PMID: 34203568 PMCID: PMC8297295 DOI: 10.3390/ijerph18136930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022]
Abstract
Although cancer is traditionally considered a genetic disease, the epigenetic abnormalities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation, have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epigenetic changes occur more frequently, and cellular epigenome is more susceptible to change by environmental factors. Excess cancer risks are positively associated with exposure to occupational and environmental chemical carcinogens, including those from gasoline combustion exhausted in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4-Trimethylbenzene, 2-methylnaphthalene and toluene significantly contribute to PMI of the gasoline blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons, etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to diminished cancer initiation and progression through altered cellular epigenetic landscape. The present review summarizes the most important findings in the literature on the association between exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic impacts of biofuels.
Collapse
Affiliation(s)
- Steffen Mueller
- Energy Resources Center, The University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gail Dennison
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| |
Collapse
|
5
|
Di Battista P, Lovisa F, Gaffo E, Gallingani I, Damanti CC, Garbin A, Ferrone L, Carraro E, Pillon M, Lo Nigro L, Mura R, Pizzi M, Guzzardo V, Dei Tos AP, Biffi A, Bortoluzzi S, Mussolin L. Low miR-214-5p Expression Correlates With Aggressive Subtypes of Pediatric ALCL With Non-Common Histology. Front Oncol 2021; 11:663221. [PMID: 34113568 PMCID: PMC8185221 DOI: 10.3389/fonc.2021.663221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The unsatisfactory cure rate of relapsing ALK-positive Anaplastic Large-Cell Lymphoma (ALCL) of childhood calls for the identification of new prognostic markers. Here, the small RNA landscape of pediatric ALK-positive ALCL was defined by RNA sequencing. Overall, 121 miRNAs were significantly dysregulated in ALCL compared to non-neoplastic lymph nodes. The most up-regulated miRNA was miR-21-5p, whereas miR-19a-3p and miR-214-5p were reduced in ALCL. Characterization of miRNA expression in cases that relapsed after first line therapy disclosed a significant association between miR-214-5p down-regulation and aggressive non-common histology. Our results suggest that miR-214-5p level may help to refine the prognostic stratification of pediatric ALK-positive ALCL.
Collapse
Affiliation(s)
- Piero Di Battista
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Federica Lovisa
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ilaria Gallingani
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Carlotta C Damanti
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Anna Garbin
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Lavinia Ferrone
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Elisa Carraro
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Marta Pillon
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology Oncology, Azienda Policlinico G. Rodolico - San Marco, Catania, Italy
| | - Rossella Mura
- Department of Paediatric Haematology-Oncology, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Vincenza Guzzardo
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, University of Padova, Padova, Italy.,CRIBI Interdepartmental Research Center for Innovative Biotechnologies (CRIBI), University of Padova, Padova, Italy
| | - Lara Mussolin
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
6
|
Congras A, Hoareau-Aveilla C, Caillet N, Tosolini M, Villarese P, Cieslak A, Rodriguez L, Asnafi V, Macintyre E, Egger G, Brousset P, Lamant L, Meggetto F. ALK-transformed mature T lymphocytes restore early thymus progenitor features. J Clin Invest 2021; 130:6395-6408. [PMID: 33141118 DOI: 10.1172/jci134990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) is a mature T cell neoplasm that often expresses the CD4+ T cell surface marker. It usually harbors the t(2;5) (p23;q35) translocation, leading to the ectopic expression of NPM-ALK, a chimeric tyrosine kinase. We demonstrated that in vitro transduction of normal human CD4+ T lymphocytes with NPM-ALK results in their immortalization and malignant transformation. The tumor cells displayed morphological and immunophenotypical characteristics of primary patient-derived anaplastic large cell lymphomas. Cell growth, proliferation, and survival were strictly dependent on NPM-ALK activity and include activation of the key factors STAT3 and DNMT1 and expression of CD30 (the hallmark of anaplastic large-cell lymphoma). Implantation of NPM-ALK-transformed CD4+ T lymphocytes into immunodeficient mice resulted in the formation of tumors indistinguishable from patients' anaplastic large cell lymphomas. Integration of "Omic" data revealed that NPM-ALK-transformed CD4+ T lymphocytes and primary NPM-ALK+ ALCL biopsies share similarities with early T cell precursors. Of note, these NPM-ALK+ lymphoma cells overexpress stem cell regulators (OCT4, SOX2, and NANOG) and HIF2A, which is known to affect hematopoietic precursor differentiation and NPM-ALK+ cell growth. Altogether, for the first time our findings suggest that NPM-ALK could restore progenitor-like features in mature CD30+ peripheral CD4+ T cells, in keeping with a thymic progenitor-like pattern.
Collapse
Affiliation(s)
- Annabelle Congras
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Coralie Hoareau-Aveilla
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Nina Caillet
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Marie Tosolini
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Pôle Technologique du CRCT, Plateau Bioinformatique, Toulouse, France
| | - Patrick Villarese
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Agata Cieslak
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Laura Rodriguez
- Etablissement Français du Sang, Nouvelle Aquitaine, INSERM U1035, Université de Bordeaux, Bordeaux, France
| | - Vahid Asnafi
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Elisabeth Macintyre
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Pierre Brousset
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France
| | - Laurence Lamant
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, United Kingdom, Vienna, Austria, and Toulouse, France
| | - Fabienne Meggetto
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, United Kingdom, Vienna, Austria, and Toulouse, France
| |
Collapse
|
7
|
Garbin A, Lovisa F, Holmes AB, Damanti CC, Gallingani I, Carraro E, Accordi B, Veltri G, Pizzi M, d'Amore ESG, Pillon M, Biffi A, Basso K, Mussolin L. miR-939 acts as tumor suppressor by modulating JUNB transcriptional activity in pediatric anaplastic large cell lymphoma. Haematologica 2021; 106:610-613. [PMID: 32299901 PMCID: PMC7849582 DOI: 10.3324/haematol.2019.241307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anna Garbin
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Federica Lovisa
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Carlotta C Damanti
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Ilaria Gallingani
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Elisa Carraro
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Benedetta Accordi
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Giulia Veltri
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Italy
| | | | - Marta Pillon
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Alessandra Biffi
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Katia Basso
- Institute for Cancer Genetics and Dept of Pathology and Cell Biology, Columbia University, New York, USA
| | - Lara Mussolin
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| |
Collapse
|
8
|
NPM-ALK: A Driver of Lymphoma Pathogenesis and a Therapeutic Target. Cancers (Basel) 2021; 13:cancers13010144. [PMID: 33466277 PMCID: PMC7795840 DOI: 10.3390/cancers13010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK) is a tyrosine kinase associated with Anaplastic Large Cell lymphoma (ALCL) through oncogenic translocations mainly NPM-ALK. Chemotherapy is effective in ALK(+) ALCL patients and induces remission rates of approximately 80%. The remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. Different classes of ALK tyrosine kinase inhibitors (TKI) are available but used exclusively for EML4-ALK (+) lung cancers. The significant toxicities of most ALK inhibitors explain the delay in their use in pediatric ALCL patients. Some ALCL patients do not respond to the first generation TKI or develop an acquired resistance. Combination therapy with ALK inhibitors in ALCL is the current challenge. Abstract Initially discovered in anaplastic large cell lymphoma (ALCL), the ALK anaplastic lymphoma kinase is a tyrosine kinase which is affected in lymphomas by oncogenic translocations, mainly NPM-ALK. To date, chemotherapy remains a viable option in ALCL patients with ALK translocations as it leads to remission rates of approximately 80%. However, the remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. It is therefore crucial to identify new and better treatment options. Nowadays, different classes of ALK tyrosine kinase inhibitors (TKI) are available and used exclusively for EML4-ALK (+) lung cancers. In fact, the significant toxicities of most ALK inhibitors explain the delay in their use in ALCL patients, who are predominantly children. Moreover, some ALCL patients do not respond to Crizotinib, the first generation TKI, or develop an acquired resistance months following an initial response. Combination therapy with ALK inhibitors in ALCL is the current challenge.
Collapse
|
9
|
Zhang P, Zhang M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin Epigenetics 2020; 12:169. [PMID: 33160401 PMCID: PMC7648940 DOI: 10.1186/s13148-020-00962-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of clinically aggressive diseases associated with poor prognosis. Except for ALK + anaplastic large-cell lymphoma (ALCL), most peripheral T-cell lymphomas are highly malignant and have an aggressive disease course and poor clinical outcomes, with a poor remission rate and frequent relapse after first-line treatment. Aberrant epigenetic alterations play an important role in the pathogenesis and development of specific types of peripheral T-cell lymphoma, including the regulation of the expression of genes and signal transduction. The most common epigenetic alterations are DNA methylation and histone modification. Histone modification alters the level of gene expression by regulating the acetylation status of lysine residues on the promoter surrounding histones, often leading to the silencing of tumour suppressor genes or the overexpression of proto-oncogenes in lymphoma. DNA methylation refers to CpG islands, generally leading to tumour suppressor gene transcriptional silencing. Genetic studies have also shown that some recurrent mutations in genes involved in the epigenetic machinery, including TET2, IDH2-R172, DNMT3A, RHOA, CD28, IDH2, TET2, MLL2, KMT2A, KDM6A, CREBBP, and EP300, have been observed in cases of PTCL. The aberrant expression of miRNAs has also gradually become a diagnostic biomarker. These provide a reasonable molecular mechanism for epigenetic modifying drugs in the treatment of PTCL. As epigenetic drugs implicated in lymphoma have been continually reported in recent years, many new ideas for the diagnosis, treatment, and prognosis of PTCL originate from epigenetics in recent years. Novel epigenetic-targeted drugs have shown good tolerance and therapeutic effects in the treatment of peripheral T-cell lymphoma as monotherapy or combination therapy. NCCN Clinical Practice Guidelines also recommended epigenetic drugs for PTCL subtypes as second-line therapy. Epigenetic mechanisms provide new directions and therapeutic strategies for the research and treatment of peripheral T-cell lymphoma. Therefore, this paper mainly reviews the epigenetic changes in the pathogenesis of peripheral T-cell lymphoma and the advancement of epigenetic-targeted drugs in the treatment of peripheral T-cell lymphoma (PTCL).
Collapse
Affiliation(s)
- Ping Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China. .,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
10
|
Sorrentino D, Frentzel J, Mitou G, Blasco RB, Torossian A, Hoareau-Aveilla C, Pighi C, Farcé M, Meggetto F, Manenti S, Espinos E, Chiarle R, Giuriato S. High Levels of miR-7-5p Potentiate Crizotinib-Induced Cytokilling and Autophagic Flux by Targeting RAF1 in NPM-ALK Positive Lymphoma Cells. Cancers (Basel) 2020; 12:cancers12102951. [PMID: 33066037 PMCID: PMC7650725 DOI: 10.3390/cancers12102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Anaplastic lymphoma kinase positive anaplastic large cell lymphomas are a pediatric disease, which still needs treatment improvement. Crizotinib was the first ALK-targeted inhibitor used in clinics, but relapses are now known to occur. Current research efforts indicate that combined therapies could represent a superior strategy to eradicate malignant cells and prevent tumor recurrence. Autophagy is a self-digestion cellular process, known to be induced upon diverse cancer therapies. Our present work demonstrates that the potentiation of the crizotinib-induced autophagy flux, through the serine/threonine kinase RAF1 downregulation, drives ALK+ ALCL cells to death. These results should encourage further investigations on the therapeutic modulation of autophagy in this particular cancer settings and other ALK-related malignancies. Abstract Anaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are an aggressive pediatric disease. The therapeutic options comprise chemotherapy, which is efficient in approximately 70% of patients, and targeted therapies, such as crizotinib (an ALK tyrosine kinase inhibitor (TKI)), used in refractory/relapsed cases. Research efforts have also converged toward the development of combined therapies to improve treatment. In this context, we studied whether autophagy could be modulated to improve crizotinib therapy. Autophagy is a vesicular recycling pathway, known to be associated with either cell survival or cell death depending on the cancer and therapy. We previously demonstrated that crizotinib induced cytoprotective autophagy in ALK+ lymphoma cells and that its further intensification was associated with cell death. In line with these results, we show here that combined ALK and Rapidly Accelerated Fibrosarcoma 1 (RAF1) inhibition, using pharmacological (vemurafenib) or molecular (small interfering RNA targeting RAF1 (siRAF1) or microRNA-7-5p (miR-7-5p) mimics) strategies, also triggered autophagy and potentiated the toxicity of TKI. Mechanistically, we found that this combined therapy resulted in the decrease of the inhibitory phosphorylation on Unc-51-like kinase-1 (ULK1) (a key protein in autophagy initiation), which may account for the enforced autophagy and cytokilling effect. Altogether, our results support the development of ALK and RAF1 combined inhibition as a new therapeutic approach in ALK+ ALCL.
Collapse
Affiliation(s)
- Domenico Sorrentino
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Julie Frentzel
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Merck Serono S.A., Department of Biotechnology Process Sciences, Route de Fenil 25, Z.I. B, 1804 Corsier-sur-Vevey, Switzerland
| | - Géraldine Mitou
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Rafael B. Blasco
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
| | - Avédis Torossian
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Coralie Hoareau-Aveilla
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Chiara Pighi
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Manon Farcé
- Pôle Technologique du CRCT—Plateau de Cytométrie et Tri cellulaire—INSERM U1037, F-31037 Toulouse, France;
| | - Fabienne Meggetto
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Stéphane Manenti
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
| | - Estelle Espinos
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Roberto Chiarle
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sylvie Giuriato
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +33-(5)-82-74-16-35
| |
Collapse
|
11
|
Vohra M, Sharma AR, Prabhu B N, Rai PS. SNPs in Sites for DNA Methylation, Transcription Factor Binding, and miRNA Targets Leading to Allele-Specific Gene Expression and Contributing to Complex Disease Risk: A Systematic Review. Public Health Genomics 2020; 23:155-170. [PMID: 32966991 DOI: 10.1159/000510253] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The complex genetic diversity among human populations results from an assortment of factors acting at various sequential levels, including mutations, population migrations, genetic drift, and selection. Although there are a plethora of DNA sequence variations identified through genome-wide association studies (GWAS), the challenge remains to explain the mechanisms underlying interindividual phenotypic disparity accounting for disease susceptibility. Single nucleotide polymorphisms (SNPs) present in the sites for DNA methylation, transcription factor (TF) binding, or miRNA targets can alter the gene expression. The systematic review aimed to evaluate the complex crosstalk among SNPs, miRNAs, DNA methylation, and TFs for complex multifactorial disease risk. METHODS PubMed and Scopus databases were used from inception until May 15, 2019. Initially, screening of articles involved studies assessing the interaction of SNPs with TFs, DNA methylation, or miRNAs resulting in allele-specific gene expression in complex multifactorial diseases. We also included the studies which provided experimental validation of the interaction of SNPs with each of these factors. The results from various studies on multifactorial diseases were assessed. RESULTS A total of 11 articles for SNPs interacting with DNA methylation, 30 articles for SNPs interacting with TFs, and 11 articles for SNPs in miRNA binding sites were selected. The interactions of SNPs with epigenetic factors were found to be implicated in different types of cancers, autoimmune diseases, cardiovascular diseases, diabetes, and asthma. CONCLUSION The systematic review provides evidence for the interplay between genetic and epigenetic risk factors through allele-specific gene expression in various complex multifactorial diseases.
Collapse
Affiliation(s)
- Manik Vohra
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anu Radha Sharma
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Navya Prabhu B
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
12
|
Kurubanjerdjit N, Ng KL. A database of integrated molecular and phytochemical interactions of the foxm1 pathway for lung cancer. J Biomol Struct Dyn 2020; 40:177-189. [PMID: 32835615 DOI: 10.1080/07391102.2020.1810777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The FoxM1 pathway is an oncogenic signaling pathway involved in essential mechanisms including control cell-cycle progression, apoptosis and cell growth which are the common hallmarks of various cancers. Although its biological functions in the tumor development and progression are known, the mechanism by which it participates in those processes is not understood. The present work reveals images of the oncogenic FoxM1 pathway controlling the cell cycle process with alternative treatment options via phytochemical substances in the lung cancer study. The downstream significant protein modules of the FoxM1 pathway were extracted by the Molecular Complex Detection (MCODE) and the maximal clique (Mclique) algorithms. Furthermore, the effects of post-transcriptional modification by microRNA, transcription factor binding and the phytochemical compounds are observed through their interactions with the lung cancer protein modules. We provided two case studies to demonstrate the usefulness of our database. Our results suggested that the combination of various phytochemicals is effective in the treatment of lung cancer. The ultimate goal of the present work is to partly support the discovery of plant-derived compounds in combination treatment of classical chemotherapeutic agents to increase the efficacy of lung cancer method probably with minor side effects. Furthermore, a web-based system displaying results of the present work is set up for investigators posing queries at http://sit.mfu.ac.th/lcgdb/index_FoxM1.php.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Ambeskovic M, Ilnytskyy Y, Kiss D, Currie C, Montina T, Kovalchuk I, Metz GAS. Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk. Aging (Albany NY) 2020; 12:3828-3847. [PMID: 32087063 PMCID: PMC7066928 DOI: 10.18632/aging.102848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
The incidence of non-communicable diseases (NCDs) is rising globally but their causes are generally not understood. Here we show that cumulative ancestral stress leads to premature aging and raises NCD risk in a rat population. This longitudinal study revealed that cumulative multigenerational prenatal stress (MPS) across four generations (F0-F3) raises age- and sex-dependent adverse health outcomes in F4 offspring. MPS accelerated biological aging processes and exacerbated sex-specific incidences of respiratory and kidney diseases, inflammatory processes and tumors. Unbiased deep sequencing of frontal cortex revealed that MPS altered expression of microRNAs and their target genes involved in synaptic plasticity, stress regulation, immune function and longevity. Multi-layer top-down deep learning metabolite enrichment analysis of urine markers revealed altered metabolic homeodynamics in MPS males. Thus, peripheral metabolic signatures may provide sensitive biomarkers of stress vulnerability and disease risk. Programming by MPS appears to be a significant determinant of lifetime mental health trajectories, physical wellbeing and vulnerability to NCDs through altered epigenetic regulation.
Collapse
Affiliation(s)
- Mirela Ambeskovic
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Douglas Kiss
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Cheryl Currie
- Faculty of Health Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| |
Collapse
|
14
|
Abstract
Introduction: T-cell lymphomas represent a broad group of malignant T-cell neoplasms with marked molecular, clinical, and biologic heterogeneity. Survival rates after conventional chemotherapy regimens are poor for most subtypes and new therapies are needed. Rapidly expanding knowledge in the field of epigenomics and the development of an increasing number of epigenetic-modifying agents have created new opportunities for epigenetic therapies for patients with this complex group of diseases.Areas covered: The present review summarizes current knowledge on epigenetic alterations in T-cell lymphomas, availability, and mechanisms of action of epigenetic-modifying agents, results of clinical trials of epigenetic therapies in T-cell lymphomas, status of FDA approval, and biomarker approaches to guide therapy. Promising future directions are discussed.Expert opinion: Mutations in epigenetic-modifying genes are among the most common genetic alterations in T-cell lymphomas, highlighting the potential for epigenetic therapies to improve management of this group of diseases. Single-agent efficacy is well documented, leading to FDA approval for several indications, but overall response rates and durability of responses remain modest. Critical next steps for the field include optimizing combination therapies that incorporate epigenetic-modifying agents and developing predictive biomarkers that help guide patient and drug selection.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|
16
|
Non-Coding RNA Networks in ALK-Positive Anaplastic-Large Cell Lymphoma. Int J Mol Sci 2019; 20:ijms20092150. [PMID: 31052302 PMCID: PMC6539248 DOI: 10.3390/ijms20092150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are essential regulators of gene expression. In recent years, it has become more and more evident that the different classes of ncRNAs, such as micro RNAs, long non-coding RNAs and circular RNAs are organized in tightly controlled networks. It has been suggested that deregulation of these networks can lead to disease. Several studies show a contribution of these so-called competing-endogenous RNA networks in various cancer entities. In this review, we highlight the involvement of ncRNA networks in anaplastic-large cell lymphoma (ALCL), a T-cell neoplasia. A majority of ALCL cases harbor the molecular hallmark of this disease, a fusion of the anaplastic lymphoma kinase (ALK) gene with the nucleophosmin (NPM, NPM1) gene leading to a permanently active kinase that promotes the malignant phenotype. We have focused especially on ncRNAs that are regulated by the NPM-ALK fusion gene and illustrate how their deregulation contributes to the pathogenesis of ALCL. Lastly, we summarize the findings and point out potential therapeutic implications.
Collapse
|
17
|
Zhang H, Wang J, Wang Z, Ruan C, Wang L, Guo H. Serum miR-100 is a potential biomarker for detection and outcome prediction of glioblastoma patients. Cancer Biomark 2019; 24:43-49. [PMID: 30530966 DOI: 10.3233/cbm-181416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huiping Zhang
- Department of Neurology, Baoji Hi-Tech People’s Hospital, Baoji, Shaanxi 721000, China
| | - Jianfeng Wang
- Department of Neurology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Zhanying Wang
- Department of Neurology, Xianyang Hospital of Yan’an University, Xianyang, Shaanxi 712000, China
| | - Cailian Ruan
- Medical College, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Lu Wang
- Medical College, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Hongtao Guo
- College of Physical Education, Yan’an University, Yan’an, Shaanxi 716000, China
| |
Collapse
|
18
|
Amair-Pinedo F, Matos I, Saurí T, Hernando J, Capdevila J. The Treatment Landscape and New Opportunities of Molecular Targeted Therapies in Gastroenteropancreatic Neuroendocrine Tumors. Target Oncol 2018; 12:757-774. [PMID: 29143176 DOI: 10.1007/s11523-017-0532-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms that originate from neuroendocrine stem cells and express both neural and endocrine markers. They are found in almost every organ, and while NENs are mostly associated with slow growth, complications due to the uncontrolled secretion of active peptides, and metastatic disease, may significantly impair the quality of life and can ultimately lead to the death of affected individuals. Expanding knowledge of the genetic, epigenetic, and proteomic landscapes of NENs has led to a better understanding of their molecular pathology and consequently increased treatment options for patients. Here, we review the principal breakthroughs in NEN treatment management, owing largely to omics technologies over the last few years, current recommendations of systemic treatment, and ongoing research into the identification of predictive and response biomarkers based on molecular targeted therapies.
Collapse
Affiliation(s)
| | - Ignacio Matos
- Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Tamara Saurí
- Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jorge Hernando
- Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jaume Capdevila
- Vall d'Hebron University Hospital, Barcelona, Spain. .,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
19
|
Wang X, Wang E, Cao J, Xiong F, Yang Y, Liu H. MiR-145 inhibits the epithelial-to-mesenchymal transition via targeting ADAM19 in human glioblastoma. Oncotarget 2017; 8:92545-92554. [PMID: 29190936 PMCID: PMC5696202 DOI: 10.18632/oncotarget.21442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/28/2017] [Indexed: 11/25/2022] Open
Abstract
In recent years, increasing studies demonstrated that miR-145 plays a tumor suppressor role in many human cancers. In the present study, we evaluated the expression of miR-145 and A Disintegrin and Metalloproteinase 19 (ADAM19) in glioblastoma multiforme (GBM) tissues and cells. Furthermore, we investigated the mechanisms underlying miR-145/ADAM19-induced GBM biology. Here, we found that miR-145 expression was down-regulated, while ADAM19 expression was up-regulated in GBM tissues and cells. Moreover, miR-145 mimics repressed U87 and U251 cell proliferation, migration and invasion. miR-145 mimics also inhibited the epithelial-to-mesenchymal transition (EMT) of U87 and U251 cells. Mechanically, the 3′ untranslated region (3′-UTR) of ADAM19 mRNA was a direct target for miR-145. In addition, ADAM19 over-expression also partially abrogated miR-145-inhibited EMT. In conclusion, this work suggested that high miR-145 expression inhibited EMT of GBM cells by targeting ADAM19. Thus miR-145/ADAM19 can be suggested as a novel target for GBM patients.
Collapse
Affiliation(s)
- Xingqiang Wang
- Department of Neurosurgery, Rizhao People's Hospital, Jining Medical University, Rizhao 276826, Shandong, China
| | - Enqin Wang
- Clinical Skill Training Center, Rizhao People's Hospital, Jining Medical University, Rizhao 276826, Shandong, China
| | - Jun Cao
- Department of Neurosurgery, Rizhao People's Hospital, Jining Medical University, Rizhao 276826, Shandong, China
| | - Feng Xiong
- Department of Neurosurgery, Rizhao People's Hospital, Jining Medical University, Rizhao 276826, Shandong, China
| | - Yonglin Yang
- Department of Neurosurgery, Rizhao People's Hospital, Jining Medical University, Rizhao 276826, Shandong, China
| | - Haitao Liu
- Department of Neurosurgery, Rizhao People's Hospital, Jining Medical University, Rizhao 276826, Shandong, China
| |
Collapse
|