1
|
Hernández Martínez SA, Melchor-Martínez EM, González-González RB, Sosa-Hernández JE, Araújo RG, Rodríguez-Hernández JA, Barceló D, Parra-Saldívar R, Iqbal HMN. Environmental concerns and bioaccumulation of psychiatric drugs in water bodies - Conventional versus biocatalytic systems of mitigation. ENVIRONMENTAL RESEARCH 2023; 229:115892. [PMID: 37084948 PMCID: PMC10114359 DOI: 10.1016/j.envres.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has brought increments in market sales and prescription of medicines commonly used to treat mental health disorders, such as depression, anxiety, stress, and related problems. The increasing use of these drugs, named psychiatric drugs, has led to their persistence in aquatic systems (bioaccumulation), since they are recalcitrant to conventional physical and chemical treatments typically used in wastewater treatment plants. An emerging environmental concern caused by the bioaccumulation of psychiatric drugs has been attributed to the potential ecological and toxicological risk that these medicines might have over human health, animals, and plants. Thus, by the application of biocatalysis-assisted techniques, it is possible to efficiently remove psychiatric drugs from water. Biocatalysis, is a widely employed and highly efficient process implemented in the biotransformation of a wide range of contaminants, since it has important differences in terms of catalytic behavior, compared to common treatment techniques, including photodegradation, Fenton, and thermal treatments, among others. Moreover, it is noticed the importance to monitor transformation products of degradation and biodegradation, since according to the applied removal technique, different toxic transformation products have been reported to appear after the application of physical and chemical procedures. In addition, this work deals with the discussion of differences existing between high- and low-income countries, according to their environmental regulations regarding waste management policies, especially waste of the drug industry.
Collapse
Affiliation(s)
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDEA-CSIC, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Cientific i Tecnològic de la Universitat de Girona, Edifici H(2)O, Girona, Spain
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico.
| |
Collapse
|
2
|
Asghar A, Hammad M, Kerpen K, Niemann F, Al-Kamal AK, Segets D, Wiggers H, Schmidt TC. Ozonation of carbamazepine in the presence of sulfur-dopped graphene: Effect of process parameters and formation of main transformation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161079. [PMID: 36565888 DOI: 10.1016/j.scitotenv.2022.161079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The stability of graphene structure in sulfur-doped graphene catalyst is demonstrated to be a key aspect during the ozonation process. Enhancing the stability of the sulfur-doped graphene structure is therefore important to improve its catalytic activity during the ozonation process. However, this has remained a challenge so far. Therefore, we adopted a low-energy microwave plasma technique to synthesize a high purity sulfur-doped graphene (S ⎯ Gr) catalyst for the ozonation process. The effect of S ⎯ Gr in the ozonation process was tested using carbamazepine (CBZ; 0.05 mM) as a probe compound. A complete CBZ removal was obtained at an ozone concentration of 0.08 mM while in comparison with single O3, ∼1.5 and 2.5 times decrease in the formation of the two important intermediate transformation products i.e., BQM (1-(2-benzaldehyde) - 4-hydroxy (1H, 3H)-quinazoline-2-one) and BQD (1-(2-benzaldehyde) - (1H, 3H)-quinazoline-2, 4-dione) was observed. Radical scavenging experiments confirmed the formation of HO. The XPS results showed that the activity of S ⎯ Gr towards the formation of HO was positively related to S-bearing carbon atoms at the edge of the graphene structure. Therefore, the addition of S ⎯ Gr is directly linked with the formation of HO, which further contributed to the improved elimination of intermediate transformation products. With a low sulfur loss of 1 %, the microwave plasma synthesized S ⎯ Gr catalyst remained stable during ozonation, implying its feasibility in practical application.
Collapse
Affiliation(s)
- Anam Asghar
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
| | - Mohaned Hammad
- Institute for Combustion and Gas Dynamics - Particle Science and Technology (IVG-PST), University of Duisburg-Essen, Duisburg, Germany
| | - Klaus Kerpen
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Felix Niemann
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Ahmed K Al-Kamal
- Institute for Combustion and Gas Dynamics - Reactive Fluids (IVG-RF), University of Duisburg-Essen, Duisburg, Germany
| | - Doris Segets
- Institute for Combustion and Gas Dynamics - Particle Science and Technology (IVG-PST), University of Duisburg-Essen, Duisburg, Germany; Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Hartmut Wiggers
- Institute for Combustion and Gas Dynamics - Reactive Fluids (IVG-RF), University of Duisburg-Essen, Duisburg, Germany; Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Fischer M. Adsorption of Carbamazepine in All-Silica Zeolites Studied with Density Functional Theory Calculations. Chemphyschem 2023; 24:e202300022. [PMID: 36715697 DOI: 10.1002/cphc.202300022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The anticonvulsant drug carbamazepine (-) is an emerging contaminant of considerable concern due to its hazard potential and environmental persistence. Previous experimental studies proposed hydrophobic zeolites as promising adsorbents for the removal of carbamazepine from water, but only a few framework types were considered in those investigations. In the present work, electronic structure calculations based on dispersion-corrected density functional theory (DFT) were used to study the adsorption of CBZ in eleven all-silica zeolites having different pore sizes and connectivities of the pore system (AFI, ATS, BEA, CFI, DON, FAU, IFR, ISV, MOR, SFH, SSF framework types). It was found that some zeolites with one-dimensional channels formed by twelve-membered rings (IFR, AFI) exhibit the highest affinity towards CBZ. A "good fit" of CBZ into the zeolite pores that maximizes dispersion interactions was identified as the dominant factor determining the interaction strength. Further calculations addressed the role of temperature (for selected systems) and of guest-guest interactions between coadsorbed CBZ molecules. In addition to predicting zeolite frameworks of particular interest as materials for selective CBZ removal, the calculations presented here also contribute to the atomic-level understanding of the interaction of functional organic molecules with all-silica zeolites.
Collapse
Affiliation(s)
- Michael Fischer
- Crystallography & Geomaterials Research, Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany.,Bremen Center for Computational Materials Science, University of Bremen, 28359, Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
4
|
Jesus F, Domingues E, Bernardo C, Pereira JL, Martins RC, Gomes J. Ozonation of Selected Pharmaceutical and Personal Care Products in Secondary Effluent-Degradation Kinetics and Environmental Assessment. TOXICS 2022; 10:765. [PMID: 36548598 PMCID: PMC9785417 DOI: 10.3390/toxics10120765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The efficiency of ozonation depends on the water matrix and the reaction time. Herein, these factors were addressed by assessing the removal of five pharmaceutical and personal care products (PPCPs) by ozonation. The main aims were: (i) to assess the effects of the water matrix on the degradation kinetics of PPCPs, individually and in mixture, following ozonation; and (ii) to assess the ecotoxicological impact of the ozone reaction time on the treatment of a spiked municipal wastewater (MW) added the five PPCPs over several species. The degradation of the PPCPs was faster in ultrapure water, with all PPCPs being removed in 20 min, whereas in the MW, a 30 min ozonation period was required to achieve a removal close to 100%. Increasing the number of PPCPs in the water matrix did not affect the time required for their removal in the MW. Regarding the ecotoxicity assessment, Raphidocelis subcapitata and Daphnia magna were the least sensitive species, whereas Lemna minor was the most sensitive. The temporal variation of the observed effects corroborates the degradation of the added PPCPs and the formation of toxic degradation by-products. The removal of the parent compounds did not guarantee decreased hazardous potential to biological species.
Collapse
Affiliation(s)
- Fátima Jesus
- Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Eva Domingues
- CIEPQPF—Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Carla Bernardo
- CIEPQPF—Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Joana L. Pereira
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Rui C. Martins
- CIEPQPF—Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - João Gomes
- CIEPQPF—Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
5
|
Ultrasound assisted dispersive solid-phase extraction coupled with high-performance liquid chromatography-diode array detector for determination of caffeine and carbamazepine in environmental samples using exfoliated graphite/chitosan hydrogel. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The elimination of organic contaminants from natural resources is extremely important to ensure their (re-)usability. In this report, the degradation of a model pharmaceutical compound, theophylline, is compared between natural and laboratory-controlled environments. While the concentration of H2O2 variably affected the degradation efficiency (approximately from 8 to 20 min for complete degradation) in the photo-irradiation experiments, the inorganic compounds (NaNO3, KH2PO4 and ZnSO4) present in the medium seemed to affect the degradation by scavenging hydroxyl radicals (•OH). The end-product studies using high-resolution mass spectrometry (HRMS) ruled out the involvement of secondary radicals in the degradation mechanism. The quantitative calculation with the help of authentic standards pointed out the predominant role of hydroxylation pathways, especially in the initial stages. Although a noticeable decline in the degradation efficiency was observed in river water samples (complete degradation after 25 min with an approximately 20% total organic carbon (TOC) removal), appreciable TOC removal (70%) was eventually achieved after prolonged irradiation (1 h) and in the presence of additional H2O2 (5 times), revealing the potential of our technique. The results furnished in this report could be considered as a preliminary step for the construction of •OH-based wastewater treatment methodologies for the remediation of toxic pollutants from the real environment.
Collapse
|
7
|
Abstract
The increasing consumption of pharmaceutical and personal care products (PPCPs) by humankind has been causing an accumulation of contaminants (commonly referred to as contaminants of emerging concern), in effluents and water resources. Ozonation can be used to improve the removal of these contaminants during water treatment to alleviate this burden. In this work, the degradation of methyl (MP), propylparaben (PP), paracetamol (PCT), sulfamethoxazole (SMX), and carbamazepine (CBZ) by ozonation was assessed both for individual compounds and for mixtures with increasing complexity (two to five compounds). Ozonation was performed at pH3 to gain an insight on the exclusive action of molecular ozone as oxidizing agent. The degradation of contaminants was described as a function of time and transferred ozone dose, and the corresponding pseudo-first order kinetic rate constants (k’) were determined. PPCPs were degraded individually within 1.5 to 10 min. CBZ was the most quickly degraded (k’ = 1.25 min−1) and MP the most resistant to ozone (k’ = 0.25 min−1). When in the mixture, the degradation rate of the contaminants was slower. For parabens, the increase of the number of compounds in the mixture led to an exponential decrease of the k’ values. Moreover, the presence of more PPCPs within the mixture increased energy consumption associated with the treatment, thereby reflecting higher economic costs.
Collapse
|
8
|
Microporous Zeolites and Related Nanoporous Materials: Synthesis, Characterization and Application in Catalysis. Catalysts 2021. [DOI: 10.3390/catal11030382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microporous zeolites and related nanoporous materials have been studied intensively in academic and industrial laboratories around the world [...]
Collapse
|
9
|
Attallah OA, Rabee M. A pectin/chitosan/zinc oxide nanocomposite for adsorption/photocatalytic remediation of carbamazepine in water samples. RSC Adv 2020; 10:40697-40708. [PMID: 35519177 PMCID: PMC9057706 DOI: 10.1039/d0ra08010a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022] Open
Abstract
The present study investigates a synergistic adsorption/photodegradation technique catalyzed by a pectin/chitosan/zinc oxide (Pec/CS/ZnO) nanocomposite for the removal of carbamazepine (CBZ) in aqueous solutions under direct sunlight. The Pec/CS/ZnO nanocomposite was prepared by an inotropic gelation method and was characterized using different techniques. The adsorption/photocatalytic activity of the Pec/CS/ZnO nanocomposite for the remediation of CBZ was optimized using Box-Behnken design under response surface methodology. The examined parameters included the amount of Pec/CS/ZnO nanocomposite (0.25-0.75 g L-1), pH (4-10), and run time for adsorption/photo-irradiation (1-5 hours). The efficiency of CBZ degradation was calculated in terms of changes in CBZ concentration using a validated chromatographic assay. The optimum conditions for the remediation of CBZ were 0.5 g L-1 Pec/CS/ZnO nanocomposite, pH 4, and 3 hour run time. Under such conditions, the degradation efficiency of 10 mg L-1 CBZ was found to be 69.5% with a rate constant (k) of 0.00737 min-1 and half-life time of 94 min. The efficiency of the Pec/CS/ZnO nanocomposite for CBZ remediation was found to be stable and consistent after three cycles of reuse. The presence of other pharmaceutical contaminants such as acetaminophen in wastewater samples was also investigated. The efficiency of CBZ degradation was not significantly affected by the addition of acetaminophen in a 0-15 mg L-1 concentration range which confirmed the selectivity and efficiency of the proposed method for CBZ degradation and removal.
Collapse
Affiliation(s)
- Olivia A Attallah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University Cairo - Belbeis Desert Road, El Salam Cairo 11777 Egypt
| | - Mahmoud Rabee
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University Cairo - Belbeis Desert Road, El Salam Cairo 11777 Egypt
| |
Collapse
|
10
|
Effect of Synthesis Conditions of Nitrogen and Platinum Co-Doped Titania Films on the Photocatalytic Performance under Simulated Solar Light. Catalysts 2020. [DOI: 10.3390/catal10091074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Platinum and nitrogen co-doped titania films of different surface morphologies obtained via a sol-gel process have been tested for tetracycline hydrochloride photocatalytic decomposition under simulated solar light. Titania crystallization to anatase is shown by XRD for all films. A shift of the bandgap edge toward the visible region in absorption spectra and, consequently, a narrowing of the bandgap is observed for some films doped with nitrogen and/or exposed to UV pretreatment. The surface peculiarities of the samples are presented by an SEM and TEM investigation. The surface saturation by Pt and N with a homogeneous distribution of Pt ions on the surface as well as bulk as established by XPS and EDS data can be achieved with a certain synthesis procedure. The influence of the platinum content and of the pretreatment procedure on the state and atomic surface concentration of incorporated nitrogen and platinum is studied by XPS analysis: substitutional and interstitial nitrogen, non-metal containing fragments, Pt0, Pt2+ and Pt4+ ions. The photocatalytic activity of the films is ruled by the presence of Pt2+ ions and N rather than Pt0. The formation of the polycrystalline titania structure and Pt0 nanoparticles (NPs) is confirmed by TEM and electron diffraction images. The mechanism of primary photocatalytic processes is proposed.
Collapse
|
11
|
Kråkström M, Saeid S, Tolvanen P, Kumar N, Salmi T, Kronberg L, Eklund P. Ozonation of carbamazepine and its main transformation products: product determination and reaction mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23258-23269. [PMID: 32333356 PMCID: PMC7293669 DOI: 10.1007/s11356-020-08795-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 04/06/2020] [Indexed: 05/06/2023]
Abstract
Carbamazepine (CBZ) is a recalcitrant pharmaceutical often detected in wastewater and in the environment. CBZ can be removed from wastewater through advanced oxidation treatment methods such as ozonation. In this study, CBZ and its transformation product 1-(2-benzaldehyde)-(1H,3H)-quinazoline-2,4-dione (BQD) were ozonated, and the formation and transformation of their ozonation products were investigated using liquid chromatography coupled to ion trap mass spectrometry and high-resolution mass spectrometry as well as nuclear magnetic resonance (NMR). The main products, 1-(2-benzaldehyde)-4-hydro-(1H,3H)-quinazoline-2-one (BQM) and BQD were quantified using isolated standards and LC-UV. Of the original CBZ concentration, 74% was transformed into BQM and 83% of BQM was further transformed into BQD. Both products are more stable than CBZ and could still be detected after 240 min of ozonation. Another major product, 2,2'-azanediyldibenzaldehyde (TP225) was for the first time identified using NMR. Twelve further CBZ products were identified.
Collapse
Affiliation(s)
- Matilda Kråkström
- Laboratory of Organic Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland.
| | - Soudabeh Saeid
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Pasi Tolvanen
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Narendra Kumar
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Tapio Salmi
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Leif Kronberg
- Laboratory of Organic Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Patrik Eklund
- Laboratory of Organic Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| |
Collapse
|