1
|
Wang X, Liu Y, Wang Z, Song J, Li X, Xu C, Xu Y, Zhang L, Bao W, Sun B, Wang L, Liu D. [Ce 3+-O V-Ce 4+] Located Surface-Distributed Sheet Cu-Zn-Ce Catalysts for Methanol Production by CO 2 Hydrogenation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15140-15149. [PMID: 38978384 DOI: 10.1021/acs.langmuir.4c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The metal-support interaction is crucial for the performance of Cu-based catalysts. However, the distinctive properties of the support metal element itself are often overlooked in catalyst design. In this paper, a sheet Cu-Zn-Ce with [Ce3+-OV-Ce4+] located on the surface was designed by the sol-gel method. Through EPR and X-ray photoelectron spectroscopy (XPS), the relationship between the content of oxygen vacancies and Ce was revealed. Ce itself induces the generation of [Ce3+-OV-Ce4+]. Through ICP-MS, XPS, and SEM-mapping, the Ce-induced formation of [Ce3+-OV-Ce4+] located on the catalyst surface was demonstrated. CO2-TPD and DFT calculations further revealed that [Ce3+-OV-Ce4+] enhanced CO2 adsorption, leading to a 10% increase in methanol selectivity compared to Cu-Zn-Ce synthesized via the coprecipitation method.
Collapse
Affiliation(s)
- Xuguang Wang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Yaxin Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Wang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Jianhua Song
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Xue Li
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Xu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxiang Xu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Ling Zhang
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Weizhong Bao
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Bin Sun
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Lei Wang
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Dianhua Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Wang S, Wang M, Zhang Y, Wang H, Fei H, Liu R, Kong H, Gao R, Zhao S, Liu T, Wang Y, Ni M, Ciucci F, Wang J. Metal Oxide-Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. SMALL METHODS 2023:e2201714. [PMID: 37029582 DOI: 10.1002/smtd.202201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The sluggish kinetics of the oxygen reduction reaction (ORR) with complex multielectron transfer steps significantly limits the large-scale application of electrochemical energy devices, including metal-air batteries and fuel cells. Recent years witnessed the development of metal oxide-supported metal catalysts (MOSMCs), covering single atoms, clusters, and nanoparticles. As alternatives to conventional carbon-dispersed metal catalysts, MOSMCs are gaining increasing interest due to their unique electronic configuration and potentially high corrosion resistance. By engineering the metal oxide substrate, supported metal, and their interactions, MOSMCs can be facilely modulated. Significant progress has been made in advancing MOSMCs for ORR, and their further development warrants advanced characterization methods to better understand MOSMCs and precise modulation strategies to boost their functionalities. In this regard, a comprehensive review of MOSMCs for ORR is still lacking despite this fast-developing field. To eliminate this gap, advanced characterization methods are introduced for clarifying MOSMCs experimentally and theoretically, discuss critical methods of boosting their intrinsic activities and number of active sites, and systematically overview the status of MOSMCs based on different metal oxide substrates for ORR. By conveying methods, research status, critical challenges, and perspectives, this review will rationally promote the design of MOSMCs for electrochemical energy devices.
Collapse
Affiliation(s)
- Siyuan Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Miao Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunze Zhang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hongsheng Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hao Fei
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Ruoqi Liu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hui Kong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Siyuan Zhao
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yuhao Wang
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, 518048, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
3
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
4
|
Villy LP, Kohut A, Kéri A, Bélteki Á, Radnóczi G, Fogarassy Z, Radnóczi GZ, Galbács G, Geretovszky Z. Continuous spark plasma synthesis of Au/Co binary nanoparticles with tunable properties. Sci Rep 2022; 12:18560. [PMCID: PMC9633648 DOI: 10.1038/s41598-022-22928-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractWe present here a scalable and environmentally friendly gas phase technique employing atmospheric pressure electrical spark discharge plasmas for the production of Au/Co binaries, an effective catalyst system for the decomposition of hydrogen-rich compounds, such as ammonium borane. We demonstrate that Au/Co alloy nanoparticles can be produced via the spark plasma-based technique. The possibility of varying the morphology and phase structure via real time heat treatment of the generated aerosol to form Au/Co/CoO particles with continuous control over a wide particle compositional range (from 24 to 64 at.% [Co]/([Co] + [Au]) content) is also demonstrated. Since our spark-based approach is proven to be capable of providing reasonable particle yields, these results may contribute to the transition of lab-scale, nanocatalyst-based hydrogen storage systems to real world applications.
Collapse
|
5
|
Wang Y, Zhang Y, Jiang Q, Guo S, Baiker A, Li G. Ternary CuCrCeOx Solid Solution Enhances N2‐Selectivity in the NO Reduction with CO in the Presence of Water and Oxygen. ChemCatChem 2022. [DOI: 10.1002/cctc.202200203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuhang Wang
- Shenyang Normal University Institute of Catalysis for Energy and Environment CHINA
| | - Yifei Zhang
- Shenyang Normal University Institute of Catalysis for Energy and Environment 110034 Shenyang CHINA
| | - Qike Jiang
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis CHINA
| | - Song Guo
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis CHINA
| | - Alfons Baiker
- ETH Zurich: Eidgenossische Technische Hochschule Zurich Department of Chemistry and Applied Biosciences Wolfgang Pauli Strasse 12 CH-8093 Zürich SWITZERLAND
| | - Gao Li
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis CHINA
| |
Collapse
|
6
|
Wen Y, Huang Q, Zhang Z, Huang W. Morphology‐Dependent
Catalysis of
CeO
2
‐Based
Nanocrystal Model Catalysts. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Wen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Qiuyu Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Zhenhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Cataly‐sis of Anhui Higher Education Institutes and Department of Chemical Physics University of Science and Technology of China Hefei 230026 People's Republic of China
- Dalian National Laboratory for Clean Energy Chinese Academy of Sciences Dalian 116023 People's Republic of China
| |
Collapse
|
7
|
Nanostructured Ceria-zirconia Supported Ni Catalysts for High Performance CO2 Methanation: Phase and morphology effect on activity. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Matte LP, Thill AS, Lobato FO, Novôa MT, Muniz AR, Poletto F, Bernardi F. Reduction-Driven 3D to 2D Transformation of Cu Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106583. [PMID: 35018723 DOI: 10.1002/smll.202106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The interaction between metal and metal oxides at the nanoscale is of uttermost importance in several fields, thus its enhancement is highly desirable. In catalysis, the performance of the nanoparticles is dependent on a wide range of properties, including its shape that is commonly considered stable during the catalytic reaction. In this study, highly reducible CeO2-x nanoparticles are synthesized aiming to provide Cu/CeO2-x nanoparticles, which are classically active catalysts for the CO oxidation reaction. It is observed that the Cu nanoparticles shape changes during reduction treatment (prior to the CO oxidation reaction) from a nearly spherical 3D to a planar 2D shape, then enhances the Cu-CeO2-x interaction. The spread of the Cu nanoparticles over the CeO2-x surface during the reduction treatment occurs due to the minimization of the total system energy. The shape change is accompanied by migration of O atoms from CeO2 surface to the border of the Cu nanoparticles and the change from the Cu0 to Cu+1 state. The spreading of the Cu nanoparticles influences on the reactivity results toward the CO oxidation reaction since it changes the local atomic order around Cu atoms. The results show a timely contribution for enhancing the interaction between metal and metal oxide.
Collapse
Affiliation(s)
- Lívia P Matte
- Programa de Pós-Graduação em Física, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Alisson S Thill
- Programa de Pós-Graduação em Física, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Francielli O Lobato
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Matheus T Novôa
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90040-040, Brazil
| | - André R Muniz
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90040-040, Brazil
| | - Fernanda Poletto
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Fabiano Bernardi
- Programa de Pós-Graduação em Física, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
9
|
Hou J, Hu J, Chang L, Wang J, Zeng Z, Wu D, Cui X, Bao W, Yao J. Synergistic effects between highly dispersed CuOx and the surface Cu-[Ox]-Ce structure on the catalysis of benzene combustion. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Jalal A, Zhao Y, Uzun A. Pyrolysis Temperature Tunes the Catalytic Properties of CuBTC-Derived Carbon-Embedded Copper Catalysts for Partial Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahsan Jalal
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
11
|
Ivanin IA, Krotova IN, Udalova OV, Zanaveskin KL, Shilina MI. Synergistic Catalytic Effect of Cobalt and Cerium in the Preferential Oxidation of Carbon Monoxide on Modified Co/Ce/ZSM-5 Zeolites. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158421060082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Papatheodorou G, Ntzoufra P, Hapeshi E, Vakros J, Mantzavinos D. Hybrid Biochar/Ceria Nanomaterials: Synthesis, Characterization and Activity Assessment for the Persulfate-Induced Degradation of Antibiotic Sulfamethoxazole. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:194. [PMID: 35055213 PMCID: PMC8778396 DOI: 10.3390/nano12020194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022]
Abstract
Biochar from spent malt rootlets was employed as the template to synthesize hybrid biochar-ceria materials through a wet impregnation method. The materials were tested for the activation of persulfate (SPS) and subsequent degradation of sulfamethoxazole (SMX), a representative antibiotic, in various matrices. Different calcination temperatures in the range 300-500 °C were employed and the resulting materials were characterized by means of N2 adsorption and potentiometric mass titration as well as TGA, XRD, SEM, FTIR, DRS, and Raman spectroscopy. Calcination temperature affects the biochar content and the physicochemical properties of the hybrid materials, which were tested for the degradation of 500 μg L-1 SMX with SPS (in the range 200-500 mg L-1) in various matrices including ultrapure water (UPW), bottled water, wastewater, and UPW spiked with bicarbonate, chloride, or humic acid. Materials calcined at 300-350 °C, with a surface area of ca. 120 m2 g-1, were the most active, yielding ca. 65% SMX degradation after 120 min of reaction in UPW; materials calcined at higher temperatures as well as bare biochar were less active. Degradation decreased with increasing matrix complexity due to the interactions amongst the surface, the contaminant, and the oxidant. Experiments in the presence of scavengers (i.e., methanol, t-butanol, and sodium azide) revealed that sulfate and hydroxyl radicals as well as singlet oxygen were the main oxidative species.
Collapse
Affiliation(s)
- Golfo Papatheodorou
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (G.P.); (P.N.)
| | - Paraskevi Ntzoufra
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (G.P.); (P.N.)
| | - Evroula Hapeshi
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus;
| | - John Vakros
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (G.P.); (P.N.)
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (G.P.); (P.N.)
| |
Collapse
|
13
|
Abstract
The preferential CO oxidation (so-called CO-PROX) is the selective CO oxidation amid H2-rich atmospheres, a process where ceria-based materials are consolidated catalysts. This article aims to disentangle the potential CO–H2 synergism under CO-PROX conditions on the low-index ceria surfaces (111), (110) and (100). Polycrystalline ceria, nanorods and ceria nanocubes were prepared to assess the physicochemical features of the targeted surfaces. Diffuse reflectance infrared Fourier-transformed spectroscopy (DRIFTS) shows that ceria surfaces are strongly carbonated even at room temperature by the effect of CO, with their depletion related to the CO oxidation onset. Conversely, formate species formed upon OH + CO interaction appear at temperatures around 60 °C and remain adsorbed regardless the reaction degree, indicating that these species do not take part in the CO oxidation. Density functional theory calculations (DFT) reveal that ceria facets exhibit high OH coverages all along the CO-PROX reaction, whilst CO is only chemisorbed on the (110) termination. A CO oxidation mechanism that explains the early formation of carbonates on ceria and the effect of the OH coverage in the overall catalytic cycle is proposed. In short, hydroxyl groups induce surface defects on ceria that increase the COx–catalyst interaction, revealed by the CO adsorption energies and the stabilization of intermediates and readsorbed products. In addition, high OH coverages are shown to facilitate the hydrogen transfer to form less stable HCOx products, which, in the case of the (110) and (100), is key to prevent surface poisoning. Altogether, this work sheds light on the yet unclear CO–H2 interactions on ceria surfaces during CO-PROX reaction, providing valuable insights to guide the design of more efficient reactors and catalysts for this process.
Collapse
|
14
|
Lazzarini A, Colaiezzi R, Gabriele F, Crucianelli M. Support-Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. MATERIALS 2021; 14:ma14226796. [PMID: 34832198 PMCID: PMC8619138 DOI: 10.3390/ma14226796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneous catalysts are progressively expanding their field of application, from high-throughput reactions for traditional industrial chemistry with production volumes reaching millions of tons per year, a sector in which they are key players, to more niche applications for the production of fine chemicals. These novel applications require a progressive utilization reduction of fossil feedstocks, in favor of renewable ones. Biomasses are the most accessible source of organic precursors, having as advantage their low cost and even distribution across the globe. Unfortunately, they are intrinsically inhomogeneous in nature and their efficient exploitation requires novel catalysts. In this process, an accurate design of the active phase performing the reaction is important; nevertheless, we are often neglecting the importance of the support in guaranteeing stable performances and improving catalytic activity. This review has the goal of gathering and highlighting the cases in which the supports (either derived or not from biomass wastes) share the worth of performing the catalysis with the active phase, for those reactions involving the synthesis of fine chemicals starting from biomasses as feedstocks.
Collapse
|
15
|
Sheven DG, Pervukhin VV. Acceleration of the thermal degradation of PETN in the microdroplets flow reactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126670. [PMID: 34329107 DOI: 10.1016/j.jhazmat.2021.126670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Thermal degradation of pentaerythritol tetranitrate (PETN) was investigated in microdroplets within a heated capillary used as a flow reactor. The thermal degradation was monitored by aerodynamic thermal breakup droplet ionization mass spectrometry. It was shown that the PETN degradation in microdroplets occurs much faster than the bulk reaction (by 4-5 orders of magnitude). The effect of the capillary material [stainless steel (Fe, Cr), copper (Cu), or fused quartz (SiO2)] on the thermal PETN degradation in microdroplets of water or acetonitrile was studied next. The capillary material affected the rate of thermal PETN degradation much more weakly than did the use of microdroplets (pure Cu was most conducive to the degradation). Kinetic parameters (activation energy and the frequency factor) of the PETN degradation for all the studied materials of the flow-through reactor and the solvents were estimated under the assumption that the thermal degradation is a first-order reaction. Implications of the acceleration of PETN degradation in microdroplets are discussed.
Collapse
Affiliation(s)
- Dmitriy G Sheven
- Nikolaev Institute of Inorganic Chemistry of SB RAS, Acad. Lavrentieva Ave., 3, 630090 Novosibirsk, Russia.
| | - Viktor V Pervukhin
- Nikolaev Institute of Inorganic Chemistry of SB RAS, Acad. Lavrentieva Ave., 3, 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Jomjaree T, Sintuya P, Srifa A, Koo-amornpattana W, Kiatphuengporn S, Assabumrungrat S, Sudoh M, Watanabe R, Fukuhara C, Ratchahat S. Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temperature CO2 methanation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Liu Z, Wang Q, Wu J, Zhang H, Liu Y, Zhang T, Tian H, Zeng S. Active Sites and Interfacial Reducibility of Cu xO/CeO 2 Catalysts Induced by Reducing Media and O 2/H 2 Activation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35804-35817. [PMID: 34313106 DOI: 10.1021/acsami.1c09332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of a highly efficient and stable catalyst for preferential oxidation of CO for the commercialization of proton-exchange membrane fuel cells has been a result of continuous effort. The main challenge is the simultaneous control of abundant active sites and interfacial reducibility over the catalyst CuxO/CeO2. Here, we report a strategy to modulate porosity, active sites, and O-vacancy sites (OV) by reducing media and O2/H2 activation. O2-pretreated CeO2-supported Cu catalysts unequivocally demonstrate the low-temperature activity owing to the excess concentrations of Cu+ and Cu2+ as well as the relative population of Ce3+ and O-vacancy sites at the surface. O2 activation improves the Cu2+ diffusion into the CeO2 lattice to generate the synergistic effect and induces the formation of electron-enriched Cu2+-OV-Ce3+ sites, which accelerate the activation and dissociation of CO/O2 and the formation of reactive oxygen species during catalysis. Density function theory (DFT) calculations reveal that CO adsorbs on Cu2O {110} and CuO {111} with relatively optimal adsorption energy and longer C-Cu lengths in contrast to that on Cu {111}, favoring the adsorption and desorption of CO. These are crucial for ongoing CO oxidation, producing CO2 by the Mars-van Krevelen mechanism.
Collapse
Affiliation(s)
- Ze Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Qi Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinfang Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Heng Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Tiantian Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Haoyuan Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Shanghong Zeng
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
18
|
Rational Design of Non-Precious Metal Oxide Catalysts by Means of Advanced Synthetic and Promotional Routes. Catalysts 2021. [DOI: 10.3390/catal11080895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Catalysis is an indispensable part of our society, involved in numerous energy and environmental applications, such as the production of value-added chemicals/fuels, hydrocarbons processing, fuel cells applications, abatement of hazardous pollutants, among others [...]
Collapse
|
19
|
You G, Xu Y, Wang P, Wang C, Chen J, Hou J, Miao L, Gao Y, Li Y. Deciphering the effects of CeO 2 nanoparticles on Escherichia coli in the presence of ferrous and sulfide ions: Physicochemical transformation-induced toxicity and detoxification mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125300. [PMID: 33578093 DOI: 10.1016/j.jhazmat.2021.125300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The physicochemical transformations as well as the redox reaction-induced toxicity changes of ceria nanoparticles (CeO2 NPs) in reducing conditions is extremely lacking. Herein, the behaviors, chemical modifications and toxicity of CeO2 NPs in the presence of reduction-active ions (namely Fe2+ and S2-) were investigated, with a particular emphasis on the cytotoxicity mechanism associated with their physicochemical transformations. The presence of Fe2+ and S2- differently altered the surface properties and toxicity of CeO2 NPs. Redox reactions with Fe2+ led to form small aggregates, boosted the reduction of CeIVO2 and enhanced dissolved Ce3+ concentration. Moreover, CeO2 NPs possessed a high affinity for Escherichia coli (E. coli) and induced the generation of •OH abiotically after reaction with Fe2+, provoking serious disruption of cell membranes and causing high toxicity to E. coli. In contrast, the amending of S2- protected E. coli from direct contact with CeO2 NPs by creating new Ce2S3 precipitated on the surface, accelerating the aggregation of NPs and reducing the concentration of dissolved Ce3+. This study suggested that the chemical interactions between the reactive surfaces of CeO2 and reduction-active ions highly determined the stability and cytotoxicity of CeO2 NPs, which provides fundamental insights into the environmental risks of CeO2 NPs.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yi Xu
- College of Agricultural Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yang Gao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| |
Collapse
|
20
|
Shape Effects of Ceria Nanoparticles on the Water‒Gas Shift Performance of CuOx/CeO2 Catalysts. Catalysts 2021. [DOI: 10.3390/catal11060753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The copper–ceria (CuOx/CeO2) system has been extensively investigated in several catalytic processes, given its distinctive properties and considerable low cost compared to noble metal-based catalysts. The fine-tuning of key parameters, e.g., the particle size and shape of individual counterparts, can significantly affect the physicochemical properties and subsequently the catalytic performance of the binary oxide. To this end, the present work focuses on the morphology effects of ceria nanoparticles, i.e., nanopolyhedra (P), nanocubes (C), and nanorods (R), on the water–gas shift (WGS) performance of CuOx/CeO2 catalysts. Various characterization techniques were employed to unveil the effect of shape on the structural, redox and surface properties. According to the acquired results, the support morphology affects to a different extent the reducibility and mobility of oxygen species, following the trend: R > P > C. This consequently influences copper–ceria interactions and the stabilization of partially reduced copper species (Cu+) through the Cu2+/Cu+ and Ce4+/Ce3+ redox cycles. Regarding the WGS performance, bare ceria supports exhibit no activity, while the addition of copper to the different ceria nanostructures alters significantly this behaviour. The CuOx/CeO2 sample of rod-like morphology demonstrates the best catalytic activity and stability, approaching the thermodynamic equilibrium conversion at 350 °C. The greater abundance in loosely bound oxygen species, oxygen vacancies and highly dispersed Cu+ species can be mainly accounted for its superior catalytic performance.
Collapse
|
21
|
Zhao Y, Jalal A, Uzun A. Interplay between Copper Nanoparticle Size and Oxygen Vacancy on Mg-Doped Ceria Controls Partial Hydrogenation Performance and Stability. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuxin Zhao
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri
Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ahsan Jalal
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri
Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri
Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
22
|
Hu X, Wang Y, Wu R, Zhao Y. N-doped Co3O4 catalyst with a high efficiency for the catalytic decomposition of N2O. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Sancheti SV, Yadav GD. CuO-ZnO-MgO as sustainable and selective catalyst towards synthesis of cyclohexanone by dehydrogenation of cyclohexanol over monovalent copper. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-Based Transition Metal Catalysts: A Critical Review. Catalysts 2021. [DOI: 10.3390/catal11040452] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.
Collapse
|
25
|
Popescu I, Marcu IC. Insights into the electronic and redox behavior of surface-phosphated ceria catalysts in correlation with their propane oxydehydrogenation performance. Phys Chem Chem Phys 2021; 23:5897-5907. [PMID: 33662084 DOI: 10.1039/d1cp00059d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ electrical conductivity measurements (ECMs) have been employed to gain insights into the redox and electronic behavior of ceria and surface-phosphated ceria catalysts with phosphorus contents lower than 2.2 at%. Temperature-programmed reduction under hydrogen (H2-TPR) was used to analyze the reducibility of the catalysts. Their propane oxydehydrogenation performance both in terms of activity and selectivity has been explained. It has been unambiguously shown that all the catalysts function via a heterogeneous redox mechanism involving only surface and subsurface lattice oxygen species whose availability and reactivity decrease with increasing phosphorus content with consequences on the catalytic performance.
Collapse
Affiliation(s)
- Ionel Popescu
- Research Center for Catalysts and Catalytic Processes, Faculty of Chemistry, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018 Bucharest, Romania.
| | - Ioan-Cezar Marcu
- Research Center for Catalysts and Catalytic Processes, Faculty of Chemistry, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018 Bucharest, Romania. and Laboratory of Chemical Technology and Catalysis, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018 Bucharest, Romania
| |
Collapse
|
26
|
Zabilskiy M, Arčon I, Djinović P, Tchernychova E, Pintar A. In‐situ
XAS Study of Catalytic N
2
O Decomposition Over CuO/CeO
2
Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202001829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maxim Zabilskiy
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute CH-5232 Villigen Switzerland
| | - Iztok Arčon
- Laboratory of Quantum Optics University of Nova Gorica SI-5000 Nova Gorica Slovenia
- Department of Low and Medium Energy Physics Jožef Stefan Institute SI-1001 Ljubljana Slovenia
| | - Petar Djinović
- Department of Inorganic Chemistry and Technology National Institute of Chemistry SI-1001 Ljubljana Slovenia
| | - Elena Tchernychova
- Department for Materials Chemistry National Institute of Chemistry SI-1001 Ljubljana Slovenia
| | - Albin Pintar
- Department of Inorganic Chemistry and Technology National Institute of Chemistry SI-1001 Ljubljana Slovenia
| |
Collapse
|
27
|
Effect of alkali (Cs) doping on the surface chemistry and CO2 hydrogenation performance of CuO/CeO2 catalysts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Abstract
CoFe2O4 prepared by sol-gel has been examined with respect to its catalytic performance for preferential CO oxidation in a H2-rich stream. In turn, the promoting effects of incorporation of Ce, Co, Cu, and Zr by impregnation on the surface of CoFe2O4 on the process are examined as well. The catalysts have been characterized by N2 adsorption, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), temperature programmed reduction (TPR), and X-ray photoelectron spectra (XPS), as well as diffuse reflectance infrared DRIFTS under reaction conditions with the aim of establishing structure/activity relationships for the mentioned catalyst/process. It is shown that while the presence of the various metals on CoFe2O4 hinders a low temperature CO oxidation process, it appreciably enhances the activity above 125 °C. This is basically attributed to the surface modifications, i.e. cobalt oxidation, induced in CoFe2O4 upon introduction of the metals. In turn, no methanation activity is observed in any case except for the copper-containing catalyst, in which achievement of reduced states of cobalt appears most favored.
Collapse
|
29
|
Goswami C, Yamada Y, Matus EV, Ismagilov IZ, Kerzhentsev M, Bharali P. Elucidating the Role of Oxide-Oxide/Carbon Interfaces of CuO x-CeO 2/C in Boosting Electrocatalytic Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15141-15152. [PMID: 33256414 DOI: 10.1021/acs.langmuir.0c02754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we report the synthesis and bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities of a CuOx-CeO2/C electrocatalyst (EC) with rich oxide-oxide and oxide-carbon interfaces. It not only demonstrates a smaller Tafel slope (65 mV dec-1) and higher limiting current density (-5.03 mA cm-2) but also exhibits an onset potential (-0.10 V vs Ag/AgCl) comparable to that of benchmark Pt/C. Besides undergoing the favorable direct four-electron ORR pathway, it unveils a loss of 23% of its initial current after 6 h of a stability test and a negative shift of 4 mV in the half-wave potential after the accelerated durability test compared to the corresponding current loss of 28% and negative shift of 20 mV for Pt/C. It also reveals remarkable OER activity in an alkaline medium with a low onset potential (0.20 V) and a smaller Tafel slope (177 mV dec-1). The bifunctional ORR/OER activity of CuOx-CeO2/C EC can be ascribed to the synergistic effects, its unique structure with enriched oxygen vacancies owing to the presence of Ce4+/Ce3+, robust oxide-oxide and oxide-carbon heterointerfaces, and homogeneous dispersion of oxides over the carbon bed, which facilitates faster electronic conduction.
Collapse
Affiliation(s)
- Chiranjita Goswami
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784 028, Assam, India
| | - Yusuke Yamada
- Department of Applied Chemistry & Bioengineering, Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ekaterina V Matus
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ilyas Z Ismagilov
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Mikhail Kerzhentsev
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pankaj Bharali
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784 028, Assam, India
| |
Collapse
|
30
|
Hydrothermal Synthesis of ZnO–doped Ceria Nanorods: Effect of ZnO Content on the Redox Properties and the CO Oxidation Performance. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rational design of highly efficient, noble metal-free metal oxides is one of the main research priorities in the area of catalysis. To this end, the fine tuning of ceria-based mixed oxides by means of aliovalent metal doping has currently received particular attention due to the peculiar metal-ceria synergistic interactions. Herein, we report on the synthesis, characterization and catalytic evaluation of ZnO–doped ceria nanorods (NR). In particular, a series of bare CeO2 and ZnO oxides along with CeO2/ZnO mixed oxides of different Zn/Ce atomic ratios (0.2, 0.4, 0.6) were prepared by the hydrothermal method. All prepared samples were characterized by X-ray diffraction (XRD), N2 physisorption, temperature-programmed reduction (TPR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The CO oxidation reaction was employed as a probe reaction to gain insight into structure-property relationships. The results clearly showed the superiority of mixed oxides as compared to bare ones, which could be ascribed to a synergistic ZnO–CeO2 interaction towards an improved reducibility and oxygen mobility. A close correlation between the catalytic activity and oxygen storage capacity (OSC) was disclosed. Comparison with relevant literature studies verifies the role of OSC as a key activity descriptor for reactions following a redox-type mechanism.
Collapse
|
31
|
Dynamic Modeling and Control of a Coupled Reforming/Combustor System for the Production of H2 via Hydrocarbon-Based Fuels. Processes (Basel) 2020. [DOI: 10.3390/pr8101243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work aims to provide insights into the dynamic operation of a coupled reformer/combustion unit that can utilize a variety of saturated hydrocarbons (HCs) with 1–4 C atoms towards H2 production (along with CO2). Within this concept, a preselected HC-based feedstock enters a steam reforming reactor for the production of H2 via a series of catalytic reactions, whereas a sequential postprocessing unit (water gas shift reactor) is then utilized to increase H2 purity and minimize CO. The core unit of the overall system is the combustor that is coupled with the reformer reactor and continuously provides heat (a) for sustaining the prevailing endothermic reforming reactions and (b) for the process feed streams. The dynamic model as it is initially developed, consists of ordinary differential equations that capture the main physicochemical phenomena taking place at each subsystem (energy and mass balances) and is compared against available thermodynamic data (temperature and concentration). Further on, a distributed control scheme based on PID (Proportional–Integral–Derivative) controllers (each one tuned via Ziegler–Nichols/Z-N methodology) is applied and a set of case studies is formulated. The aim of the control scheme is to maintain the selected process-controlled variables within their predefined set-points, despite the emergence of sudden disturbances. It was revealed that the accurately tuned controllers lead to (a) a quick start-up operation, (b) minimum overshoot (especially regarding the sensitive reactor temperature), (c) zero offset from the desired operating set-points, and (d) quick settling during disturbance emergence.
Collapse
|
32
|
Wang Y, Liu Z, Wang R. NaBH
4
Surface Modification on CeO
2
Nanorods Supported Transition‐Metal Catalysts for Low Temperature CO Oxidation. ChemCatChem 2020. [DOI: 10.1002/cctc.202000789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifan Wang
- Department of Metallurgical and Materials Engineering The University of Alabama Tuscaloosa AL 35487 USA
| | - Zhongqi Liu
- Department of Metallurgical and Materials Engineering The University of Alabama Tuscaloosa AL 35487 USA
| | - Ruigang Wang
- Department of Metallurgical and Materials Engineering The University of Alabama Tuscaloosa AL 35487 USA
| |
Collapse
|
33
|
Effect of the Preparation Method on the Physicochemical Properties and the CO Oxidation Performance of Nanostructured CeO2/TiO2 Oxides. Processes (Basel) 2020. [DOI: 10.3390/pr8070847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ceria-based mixed oxides have been widely studied in catalysis due to their unique surface and redox properties, with implications in numerous energy- and environmental-related applications. In this regard, the rational design of ceria-based composites by means of advanced synthetic routes has gained particular attention. In the present work, ceria–titania composites were synthesized by four different methods (precipitation, hydrothermal in one and two steps, Stöber) and their effect on the physicochemical characteristics and the CO oxidation performance was investigated. A thorough characterization study, including N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM) and H2 temperature-programmed reduction (H2-TPR) was performed. Ceria–titania samples prepared by the Stöber method, exhibited the optimum CO oxidation performance, followed by samples prepared by the hydrothermal method in one step, whereas the precipitation method led to almost inactive oxides. CeO2/TiO2 samples synthesized by the Stöber method display a rod-like morphology of ceria nanoparticles with a uniform distribution of TiO2, leading to enhanced reducibility and oxygen storage capacity (OSC). A linear relationship was disclosed among the catalytic performance of the samples prepared by different methods and the abundance of reducible oxygen species.
Collapse
|