1
|
Szpecht A, Zielinski D, Roszyk S, Smiglak M. Design and Characterization of Epoxy Resin Systems Based on Mixtures of Imidazolium-Based Ionic Liquids with Docusate and Dicyanamide Anions. Molecules 2024; 29:4538. [PMID: 39407468 PMCID: PMC11478318 DOI: 10.3390/molecules29194538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study focuses on the synthesis, characterization, and application of four ionic liquids (ILs), three of which are being reported for the first time, with unique thermal properties and diverse anion-cation combinations, specifically in the context of epoxy resin polymerization. 1-3-Didodecylimidazolium dicyanamide (dDDIM DCA), 1-3-Didodecylimidazolium docusate (dDDIM DOSS), 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA), and 1-ethyl-3-methylimidazolium docusate (EMIM DOSS) were used to prepare six different mixtures with the same cation and with varying concentrations of DCA components, which is the main factor of an efficient polymerization, while the other component is intended to modify the properties of the cured resin. Mixtures based on EMIM cation demonstrated increased enthalpy and lower onset polymerization temperatures, indicating more efficient curing processes. The hardness of cured epoxy resins can be adjusted by altering the curing temperature and IL composition, with EMIM DCA and EMIM DOSS mixtures displaying high Shore A hardness, suitable for durable surface applications. In contrast, mixtures with higher dDDIM DCA proportions offered a balance between rigidity and flexibility, ideal for applications requiring both mechanical strength and elasticity.
Collapse
Affiliation(s)
- Andrea Szpecht
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznan, Poland; (A.S.); (D.Z.); (S.R.)
| | - Dawid Zielinski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznan, Poland; (A.S.); (D.Z.); (S.R.)
| | - Szymon Roszyk
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznan, Poland; (A.S.); (D.Z.); (S.R.)
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznan, Poland; (A.S.); (D.Z.); (S.R.)
| |
Collapse
|
2
|
Berniak T, Łątka P, Drozdek M, Rokicińska A, Jaworski A, Leyva-Pérez A, Kuśtrowski P. Covalent bonding of N-hydroxyphthalimide on mesoporous silica for catalytic aerobic oxidation of p-xylene at atmospheric pressure. Chempluschem 2024; 89:e202300631. [PMID: 38375758 DOI: 10.1002/cplu.202300631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
The surface of SBA-15 mesoporous silica was modified by N-hydroxyphthalimide (NHPI) moieties acting as immobilized active species for aerobic oxidation of alkylaromatic hydrocarbons. The incorporation was carried out by four original approaches: the grafting-from and grafting-onto techniques, using the presence of surface silanols enabling the formation of particularly stable O-Si-C bonds between the silica support and the organic modifier. The strategies involving the Heck coupling led to the formation of NHPI groups separated from the SiO2 surface by a vinyl linker, while one of the developed modification paths based on the grafting of an appropriate organosilane coupling agent resulted in the active phase devoid of this structural element. The successful course of the synthesis was verified by FTIR and 1H NMR measurements. Furthermore, the formed materials were examined in terms of their chemical composition (elemental analysis, thermal analysis), structure of surface groups (13C NMR, XPS), porosity (low-temperature N2 adsorption), and tested as catalysts in the aerobic oxidation of p-xylene at atmospheric pressure. The highest conversion and selectivity to p-toluic acid were achieved using the catalyst with enhanced availability of non-hydrolyzed NHPI groups in the pore system. The catalytic stability of the material was additionally confirmed in several subsequent reaction cycles.
Collapse
Affiliation(s)
- Tomasz Berniak
- Department of Chemical Technology, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Piotr Łątka
- Department of Chemical Technology, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Marek Drozdek
- Department of Chemical Technology, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Anna Rokicińska
- Department of Chemical Technology, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV - CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, Valencia, 46022, Spain
| | - Piotr Kuśtrowski
- Department of Chemical Technology, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
4
|
Yang C, Arora S, Maldonado S, Pratt DA, Stephenson CRJ. The design of PINO-like hydrogen-atom-transfer catalysts. Nat Rev Chem 2023; 7:653-666. [PMID: 37464019 DOI: 10.1038/s41570-023-00511-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/20/2023]
Abstract
Phthalimide-N-oxyl (PINO) is a valuable hydrogen-atom-transfer (HAT) catalyst for selective C-H functionalization. To advance and optimize PINO-catalysed HAT reactions, researchers have been focused on modifying the phthalimide core structure. Despite much effort and some notable advances, the modifications to date have centred on optimization of a single parameter of the catalyst, such as reactivity, solubility or stability. Unfortunately, the optimization with respect to one parameter is often associated with a worsening of the others. The derivation of a single catalyst structure with optimal performance across multiple parameters has therefore remained elusive. Here we present an analysis of the structure-activity relationships of PINO and its derivatives as HAT catalysts, which we hope will stimulate further development of PINO-catalysed HAT reactions and, ultimately, lead to much improved catalysts for real-world applications.
Collapse
Affiliation(s)
- Cheng Yang
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sahil Arora
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Stephen Maldonado
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Program in Applied Physics, University of Michigan, Ann Arbor, MI, USA.
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| | - Corey R J Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
6
|
Rahmanzadeh A, Shirini F, Tajik H, Daneshvar N. Comparison of the Accelerating Effects of Two Ionic Liquids in the Oxidation of Alcohols. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Akram Rahmanzadeh
- Department of Chemistry, College of Sciences, University of Guilan, University Campus 2, Rasht, Iran
| | - Farhad Shirini
- Department of Chemistry, College of Sciences, University of Guilan, University Campus 2, Rasht, Iran
| | - Hassan Tajik
- Department of Chemistry, College of Sciences, University of Guilan, University Campus 2, Rasht, Iran
| | - Nader Daneshvar
- Department of Chemistry, College of Sciences, University of Guilan, University Campus 2, Rasht, Iran
| |
Collapse
|
7
|
Qin L, Lu W, Wu Z, Zhou W. Catalyst Performance of the Calcined Products of CoAl Layered Double Hydroxide in the Aerobic Oxidation of Ethylbenzene. Catal Letters 2022. [DOI: 10.1007/s10562-022-04117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Selective Aerobic Oxidation of P-Methoxytoluene by Co(II)-Promoted NHPI Incorporated into Cross-Linked Copolymer Structure. Catalysts 2021. [DOI: 10.3390/catal11121474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A wide series of copolymer materials with various contents of 4-vinyl-diisopropyl-phtalate ester (10–90 mol%), divinylbenzene (1–11 mol%) and styrene, as monomers, were obtained by radical copolymerization. In the last steps of the synthesis, diisopropyl ester functionalities were converted into the form of N-hydroxyphthalimide (NHPI) rings. The obtained materials with the NHPI groups immobilized in the copolymer structure were studied by various physicochemical techniques, including FT-IR, UV-Vis-DR, XPS, elemental analysis, and tested as catalysts in aerobic oxidation of p-methoxytoluene in the presence of Co(II) acetate co-catalyst. Conversion of the aromatic substrate was correlated with the NHPI content and cross-linking degree. The best catalytic performance (conversions higher than 23%) was achieved for the copolymer catalysts containing 60% and 30% of 4-vinyl-diisopropyl-phtalate ester. At too high concentrations of NHPI and DVB, some of the NHPI groups were transformed into inactive (C=O)-N=O species or not available due to embedding inside the copolymer structure. The mechanism of the process involving both NHPI centers, forming phthalimide N-oxyl (PINO) radicals, and Co(II) cations was discussed. Stability of the developed catalysts was also tested. The opening of imide rings took place during the catalytic process, resulting in the formation of carboxyl groups and the release of hydroxylamine molecules. The deactivated catalyst could be easily regenerated by repeating two last steps of closing imide ring.
Collapse
|
9
|
Andrade MA, Martins LMDRS. Organocatalysis Meets Hydrocarbon Oxyfunctionalization: the Role of
N
‐Hydroxyimides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marta A. Andrade
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico Universidade de Lisboa 1049-001 Lisboa Portugal
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico Universidade de Lisboa 1049-001 Lisboa Portugal
| |
Collapse
|
10
|
Yun L, Zhao J, Tang X, Ma C, Yu Z, Meng Q. Selective Oxidation of Benzylic sp3 C–H Bonds using Molecular Oxygen in a Continuous-Flow Microreactor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Yun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xiaofei Tang
- Xi’an Modern Chemistry Research Institute, Xi’an, Shanxi 710065, P.R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - QingWei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| |
Collapse
|
11
|
Abstract
Ionic liquids play a larger and larger as well as more and more diversified role in catalysis [...]
Collapse
|
12
|
Li Y, Liu S, Tao S, Zhu Y, Zhao Q. Hierarchically Porous Hydrothermal Carbon Microspheres Supported N-Hydroxyphthalimide as a Green and Recyclable Catalyst for Selective Aerobic Oxidation of Alcohols. ACS OMEGA 2021; 6:6466-6473. [PMID: 33718737 PMCID: PMC7948437 DOI: 10.1021/acsomega.1c00176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
A novel metal-free, reusable, and green catalytic system comprising hydrothermal carbon microspheres (HCMSs) supporting N-hydroxyphthalimide (NHPI) was developed and employed in the aerobic oxidation of alcohol. Hierarchically porous HCMSs with good monodispersity were produced by the hydrothermal carbonization of sucrose and designed NaOH-impregnated calcination under a static air atmosphere. The meso- and macroporous pores on HCMSs make up 71% of the total pore volume. The covalent immobilization of NHPI onto HCMSs was first accomplished by grafting hyperbranched polyquaternary amine via repetitive ring-opening reactions of diglycidyl ether and subsequent amidation with 4-carboxy-NHPI. Owing to the cocatalysis of grafted quaternary ammonium salt, a designed heterogeneous catalyst has superior performance to free NHPI in the oxidation of 2-phenylethanol. The established catalytic system achieved 42% conversion and up to 96% selectivity of acetophenone at 90 °C under 1 atm O2 for 20 h and presented a versatile catalytic effect for diversified alcohols. Immobilized NHPI could be facilely recycled via simple filtration and displayed good stability for six cycles without a discernible decrease of reactivity or damage of catalyst morphology in repeated oxidation test.
Collapse
Affiliation(s)
- Yuqing Li
- College
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Sha Liu
- College
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Shan Tao
- Department
of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, China
| | - Yan Zhu
- Department
of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, China
| | - Qiming Zhao
- College
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| |
Collapse
|
13
|
Shi G, Feng Y, Xu S, Lu Q, Liang Y, Yuan E, Ji L. Covalent anchoring of N-hydroxyphthalimide on silica via robust imide bonds as a reusable catalyst for the selective aerobic oxidation of ethylbenzene to acetophenone. NEW J CHEM 2021. [DOI: 10.1039/d1nj01268a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Hydroxyphthalimide is anchored on commercial silica by robust imide bonds, and the synthesized N-oxyl catalysts exhibit excellent activity, selectivity and reusability for the aerobic oxidation of ethylbenzene to acetophenone.
Collapse
Affiliation(s)
- Guojun Shi
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Ya Feng
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Sihao Xu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Qiuting Lu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Yuxin Liang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Lijun Ji
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| |
Collapse
|
14
|
N-Hydroxyphthalimide on a Polystyrene Support Coated with Co(II)-Containing Ionic Liquid as a New Catalytic System for Solvent-Free Ethylbenzene Oxidation. Catalysts 2020. [DOI: 10.3390/catal10121367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The oxidation of ethylbenzene using dioxygen was carried out applying a new catalytic system—heterogeneous N-hydroxyphthalimide (PS-NHPI) coated with an ionic liquid containing CoCl2. The catalytic system represents a combination of solid catalyst with ionic liquid layer (SCILL) and supported ionic liquid phase (SILP) techniques, wherein the resulting system utilizes CoCl2 dissolved in the 1-ethyl-3-methylimidazolium octyl sulphate ([emim)][OcOSO3]) ionic liquid phase that is layered onto the solid catalyst support. PS-NHPI was obtained by immobilizing N-hydroxyphthalimide on chloromethyl polystyrene resins by ester bonds. It was observed that novel SCILL/SILP systems significantly improved the selectivity toward acetophenone. We also demonstrate that these systems can be separated from the reaction mixture and recycled without appreciably reducing its activity and selectivity.
Collapse
|