1
|
Dai L, Hu Y, Chen C, Ma L, Guo R. Flavonoid
C
‐Glycosyltransferases: Function, Evolutionary Relationship, Catalytic Mechanism and Protein Engineering. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Longhai Dai
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| | - Yumei Hu
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| | - Chun‐Chi Chen
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| | - Lixin Ma
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| | - Rey‐Ting Guo
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| |
Collapse
|
2
|
Abstract
Biocatalysis refers to the use of microorganisms and enzymes in chemical reactions, has become increasingly popular and is frequently used in industrial applications due to the high efficiency and selectivity of biocatalysts [...]
Collapse
|
3
|
Abstract
Cascade reactions have been described as efficient and universal tools, and are of substantial interest in synthetic organic chemistry. This review article provides an overview of the novel and recent achievements in enzyme cascade processes catalyzed by multi-enzymatic or chemoenzymatic systems. The examples here selected collect the advances related to the application of the sequential use of enzymes in natural or genetically modified combination; second, the important combination of enzymes and metal complex systems, and finally we described the application of biocatalytic biohybrid systems on in situ catalytic solid-phase as a novel strategy. Examples of efficient and interesting enzymatic catalytic cascade processes in organic chemistry, in the production of important industrial products, such as the designing of novel biosensors or bio-chemocatalytic systems for medicinal chemistry application, are discussed
Collapse
|
4
|
Biocatalytic Synthesis of a Novel Bioactive Ginsenoside Using UDP-Glycosyltransferase from Bacillus subtilis 168. Catalysts 2020. [DOI: 10.3390/catal10030289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ginsenoside Rg3 is a bioactive compound from Panax ginseng and exhibits diverse notable biological properties. Glycosylation catalyzed by uridine diphosphate-dependent glycosyltransferase (UGT) is the final biosynthetic step of ginsenoside Rg3 and determines its diverse pharmacological activities. In the present study, promiscuous UGT Bs-YjiC from Bacillus subtilis 168 was expressed in Escherichia coli and purified via one-step nickel chelate affinity chromatography. The in vitro glycosylation reaction demonstrated Bs-Yjic could selectively glycosylate the C12 hydroxyl group of ginsenoside Rg3 to synthesize an unnatural ginsenoside Rd12. Ginsenoside Rd12 was about 40-fold more water-soluble than that of ginsenoside Rg3 (90 μM). Furthermore, in vitro cytotoxicity of ginsenoside Rd12 against diverse cancer cells was much stronger than that of ginsenoside Rg3. Our studies report the UGT-catalyzed synthesis of unnatural ginsenoside Rd12 for the first time. Ginsenoside Rd12 with antiproliferative activity might be further exploited as a potential anticancer drug.
Collapse
|