1
|
Cejas-Sánchez J, Caminade AM, Kajetanowicz A, Grela K, Sebastián RM. A water-soluble polyphosphorhydrazone Janus dendrimer built by "click" chemistry as support for Ru-complexes in catalysis. Dalton Trans 2024; 53:9120-9129. [PMID: 38738979 DOI: 10.1039/d3dt04376b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The field of supported catalysis has experienced increased attention with respect to the development of novel architectures for immobilizing catalytic species, aiming to maintain or enhance their activity while facilitating the easy recovery and reuse of the active moiety. Dendrimers have been identified as promising candidates capable of imparting such properties to catalysts through selective functionalization. The present study details the synthesis of two polyphosphorhydrazone (PPH) dendrons, each incorporating azide or acetylene groups at the core for subsequent coupling through "click" triazole chemistry. Employing this methodology, a novel PPH Janus dendrimer was successfully synthesized, featuring ten polyethylene glycol (PEG) chains on one side of the structure and ten Ru(p-cymene) derivatives on the other. This design was intended to confer dual properties, influencing solubility modulation, and allowing the presence of active catalytic moieties. The synthesized dendrimer underwent testing in the isomerization of allyl alcohols in organic solvents and biphasic solvent mixtures. The results demonstrated a positive dendritic effect compared with model monometallic and bimetallic species, providing a proof-of-concept for the first PPH Janus dendrimer with tested applications in catalysis.
Collapse
Affiliation(s)
- Joel Cejas-Sánchez
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain.
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France
- LCC-CNRS, Université de Toulouse, UPS, INPT, Toulouse CEDEX 4, France
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Rosa María Sebastián
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain.
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
2
|
Messori A, Martelli G, Piazzi A, Basile F, De Maron J, Fasolini A, Mazzoni R. Molecular Ruthenium Cyclopentadienone Bifunctional Catalysts for the Conversion of Sugar Platforms to Hydrogen. Chempluschem 2023; 88:e202300357. [PMID: 37572103 DOI: 10.1002/cplu.202300357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Molecular ruthenium cyclopentadienone complexes were employed for the first time as pre-catalysts in the homogeneously catalysed Aqueous Phase Reforming (APR) of glucose. Shvo's complex resulted the best pre-catalyst (loading 2 mol %) with H2 yields up to 28.9 % at 150 °C. Studies of the final mixture allowed to identify the catalyst's resting state as a mononuclear dicarbonyl complex in the extracted organic fraction. In situ NMR experiments and HPLC analyses on the aqueous fraction gave awareness of the presence of sorbitol, fructose, 5-hydroxymethylfurfural and furfural as final fate or intermediates in the transformations under APR conditions. These results were summarized in a proposed mechanism, with particular emphasis on the steps where hydrogen was obtained as the product. Benzoquinone positively affected the catalyst activation when employed as an equimolar additive.
Collapse
Affiliation(s)
- Alessandro Messori
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Giulia Martelli
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Andrea Piazzi
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Francesco Basile
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Jacopo De Maron
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Andrea Fasolini
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Rita Mazzoni
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
3
|
Messori A, Gagliardi A, Cesari C, Calcagno F, Tabanelli T, Cavani F, Mazzoni R. Advances in the homogeneous catalyzed alcohols homologation: the mild side of the Guerbet reaction. A mini-review. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Cingolani A, Olivieri D, Messori A, Cesari C, Zanotti V, Zacchini S, Gualandi I, Scavetta E, Mariani F, Tonelli D, Mazzoni R. Electrochemical Polymerisation of Newly Synthesised 3,4-Ethylene Dioxythiophene-N-Heterocyclic Carbene Iron Complexes and Application as Redox Mediators. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Boosting the guerbet reaction: A cooperative catalytic system for the efficient bio-ethanol refinery to second-generation biofuels. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Homogeneous rhodium ion catalyst encapsulated by benzoyl-terminated dendrimer: high hydrogenation and separation capabilities for diene copolymers. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Moccia F, Rigamonti L, Messori A, Zanotti V, Mazzoni R. Bringing Homogeneous Iron Catalysts on the Heterogeneous Side: Solutions for Immobilization. Molecules 2021; 26:2728. [PMID: 34066456 PMCID: PMC8124704 DOI: 10.3390/molecules26092728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Noble metal catalysts currently dominate the landscape of chemical synthesis, but cheaper and less toxic derivatives are recently emerging as more sustainable solutions. Iron is among the possible alternative metals due to its biocompatibility and exceptional versatility. Nowadays, iron catalysts work essentially in homogeneous conditions, while heterogeneous catalysts would be better performing and more desirable systems for a broad industrial application. In this review, approaches for heterogenization of iron catalysts reported in the literature within the last two decades are summarized, and utility and critical points are discussed. The immobilization on silica of bis(arylimine)pyridyl iron complexes, good catalysts in the polymerization of olefins, is the first useful heterogeneous strategy described. Microporous molecular sieves also proved to be good iron catalyst carriers, able to provide confined geometries where olefin polymerization can occur. Same immobilizing supports (e.g., MCM-41 and MCM-48) are suitable for anchoring iron-based catalysts for styrene, cyclohexene and cyclohexane oxidation. Another excellent example is the anchoring to a Merrifield resin of an FeII-anthranilic acid complex, active in the catalytic reaction of urea with alcohols and amines for the synthesis of carbamates and N-substituted ureas, respectively. A SILP (Supported Ionic Liquid Phase) catalytic system has been successfully employed for the heterogenization of a chemoselective iron catalyst active in aldehyde hydrogenation. Finally, FeIII ions supported on polyvinylpyridine grafted chitosan made a useful heterogeneous catalytic system for C-H bond activation.
Collapse
Affiliation(s)
- Fabio Moccia
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy;
| | - Alessandro Messori
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Valerio Zanotti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Rita Mazzoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| |
Collapse
|
8
|
Cingolani A, Zanotti V, Cesari C, Ferri M, Mazzocchetti L, Benelli T, Merighi S, Giorgini L, Mazzoni R. Synthesis of functionalized iron N-heterocyclic carbene complexes and their potential application as flame behavior modifier in cross linked epoxy resins. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
A brief overview of catalytic applications of dendrimers containing 1,4-disubstituted-1,2,3-triazoles. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02753-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|