1
|
Meroni D, Galloni MG, Cionti C, Cerrato G, Falletta E, Bianchi CL. Efficient Day-and-Night NO 2 Abatement by Polyaniline/TiO 2 Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031304. [PMID: 36770310 PMCID: PMC9920043 DOI: 10.3390/ma16031304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
Finding innovative and highly performing approaches for NOx degradation represents a key challenge to enhance the air quality of our environment. In this study, the high efficiency of PANI/TiO2 nanostructures in the NO2 abatement both in the dark and under light irradiation is demonstrated for the first time. Heterostructures were synthesized by a "green" method and their composition, structure, morphology and oxidation state were investigated by a combination of characterization techniques. The results show that the unique PANI structure promotes two mechanisms for the NO2 abatement in the dark (adsorption on the polymeric chains and chemical reduction to NO), whereas the photocatalytic behavior prevails under light irradiation, leading to the complete NOx degradation. The best-performing materials were subjected to recycling tests, thereby showing high stability without any significant activity loss. Overall, the presented material can represent an innovative and efficient night-and-day solution for NOx abatement.
Collapse
Affiliation(s)
- Daniela Meroni
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Florence, Italy
| | - Melissa G. Galloni
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Florence, Italy
| | - Carolina Cionti
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy
| | - Giuseppina Cerrato
- Dipartimento di Chimica, Università degli Studi di Torino, via Pietro Giuria 7, 10125 Torino, Italy
| | - Ermelinda Falletta
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Florence, Italy
| | - Claudia L. Bianchi
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Florence, Italy
| |
Collapse
|
2
|
Synergetic photodegradation via inorganic–organic hybridization strategies: a review on preparations and applications of nanoparticle-hybridized polyaniline photocatalysts. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
3
|
The Adsorption Performance of Polyaniline/ZnO Synthesized through a Two-Step Method. CRYSTALS 2021. [DOI: 10.3390/cryst12010034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyaniline/Zinc oxide (PANI/ZnO) were prepared using a two-step method, and the morphology and the structure of PANI/ZnO composites were characterized through a scanning electron microscope (SEM) and X-ray diffraction (XRD). Factors such as the content of ZnO, the adsorption time and the mass of the adsorbent, and the kinetic equation of PANI/ZnO as adsorbents for the adsorption of methyl orange solution were studied. The results showed that the adsorption efficiency of methyl orange by polyaniline with the increase of adsorbent mass firstly increased and then decreased. Among the composites with the same quality, PANI composites with 8% ZnO have a better adsorption effect for methyl orange, and the maximum adsorption ratio can reach 69% with the increase of adsorption time at 0.033 g; With the increase of adsorbent mass, the adsorption efficiency of PANI composites with 8% ZnO increased continuously. When the mass increased from 0.033 g to 0.132 g, the adsorption rate increased from 69% to 93%, and the adsorption of the methyl orange solution by PANI/ZnO composites was more in line with the quasi-second-order kinetic equation.
Collapse
|