1
|
Ranjbari A, Adhikary KK, Kashif M, Anbari AP, Siddhartha TR, Kim D, Yoon S, Yoon J, Heynderickx PM. Comparative photocatalytic degradation of cationic rhodamine B and anionic bromocresol green using reduced ZnO: A detailed kinetic modeling approach. CHEMOSPHERE 2025; 371:144052. [PMID: 39755211 DOI: 10.1016/j.chemosphere.2024.144052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The photocatalytic degradation of rhodamine B (RhB), a cationic dye, and bromocresol green (BCG), an anionic dye, was investigated using oxygen vacancy-enriched ZnO as the catalyst. These dyes were selected due to their differing charges and molecular structures, allowing for a deeper exploration of how these characteristics impact the degradation process. The catalyst was prepared by reducing ZnO with 10% H2/Ar gas at 500 °C, and the introduction of oxygen vacancies was confirmed using various characterization techniques. A detailed kinetic model was developed to track dye degradation, accounting for adsorption and photocatalytic degradation simultaneously, both in solution and on the catalyst surface. The model incorporated the effect of pH on adsorption by considering the dissociation behavior of the dyes and their respective pKa values. The study revealed that degradation primarily occurs on the catalyst surface at acidic pH, while at basic pH, degradation is more pronounced in the solution. DFT calculations supported these findings, showing that the electrostatic potential of the dyes shifts depending on pH, influencing their interaction with hydroxyl radicals or the catalyst surface. Quantum yield calculations indicate peak values of 6.32 10-5 molecules per photon for RhB at pH 11, and 4.20 10-5 for BCG at pH 3.
Collapse
Affiliation(s)
- Alireza Ranjbari
- Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent, B-9000, Belgium.
| | - Keshab Kumar Adhikary
- Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea
| | - Muhammad Kashif
- Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent, B-9000, Belgium
| | - Alireza Pourvahabi Anbari
- Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea; Department of Chemistry, Faculty of Science, Ghent University, Ghent, Belgium
| | - Tatwadhika Rangin Siddhartha
- Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent, B-9000, Belgium
| | - Doyun Kim
- Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea
| | - Seojin Yoon
- Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea
| | - Juan Yoon
- Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea
| | - Philippe M Heynderickx
- Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent, B-9000, Belgium.
| |
Collapse
|
2
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
6
|
Nguyen NTA, Kim H. Ag3PO4-Deposited TiO2@Ti3C2 Petals for Highly Efficient Photodecomposition of Various Organic Dyes under Solar Light. NANOMATERIALS 2022; 12:nano12142464. [PMID: 35889687 PMCID: PMC9322657 DOI: 10.3390/nano12142464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022]
Abstract
Two-dimensional Ti3C2 MXenes can be used to fabricate hierarchical TiO2 nanostructures that are potential photocatalysts. In this study, the photodecomposition of organic dyes under solar light was investigated using flower-like TiO2@Ti3C2, deposited using narrow bandgap Ag3PO4. The surface morphology, crystalline structure, surface states, and optical bandgap properties were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption analysis, and UV-Vis diffuse reflectance spectroscopy (UV-DRS). Overall, Ag3PO4-deposited TiO2@Ti3C2, referred to as Ag3PO4/TiO2@Ti3C2, demonstrated the best photocatalytic performance among the as-prepared samples, including TiO2@Ti3C2, pristine Ag3PO4, and Ag3PO4/TiO2 P25. Organic dyes, such as rhodamine B (RhB), methylene blue (MB), crystal violet (CV), and methylene orange (MO), were efficiently degraded by Ag3PO4/TiO2@Ti3C2. The significant enhancement of photocatalysis by solar light irradiation was attributed to the efficient deposition of Ag3PO4 nanoparticles on flower-like TiO2@Ti3C2 with the efficient separation of photogenerated e-/h+ pairs, high surface area, and extended visible-light absorption. Additionally, the small size of Ag3PO4 deposition (ca. 4–10 nm diameter) reduces the distance between the core and the surface of the composite, which inhibits the recombination of photogenerated charge carriers. Free radical trapping tests were performed, and a photocatalytic mechanism was proposed to explain the synergistic photocatalysis of Ag3PO4/TiO2@Ti3C2 under solar light.
Collapse
|
8
|
Microwave-Assisted Synthesis and Characterization of Solar-Light-Active Copper–Vanadium Oxide: Evaluation of Antialgal and Dye Degradation Activity. Catalysts 2020. [DOI: 10.3390/catal11010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this work, solar-light-active copper–vanadium oxide (Cu-VO) was synthesized by a simple microwave method and characterized by FESEM, EDS, XRD, XPS, UV–Vis/near-infrared (NIR), and FT-IR spectroscopy. Antialgal and dye degradation activities of Cu-VO were investigated against Microcystis aeruginosa and methylene blue dye (MB), respectively. The mechanism of action of Cu-VO was examined regarding the production of hydroxyl radical (·OH) in the medium and intracellular reactive oxygen species (ROS) in M. aeruginosa. FESEM and XRD analyses of Cu-VO disclosed the formation of monoclinic crystals with an average diameter of 132 nm. EDX and XPS analyses showed the presence of Cu, V, and O atoms on the surface of Cu-VO. Furthermore, FT-IR analysis of Cu-VO exposed the presence of tetrahedral VO4 and octahedral CuO6. Cu-VO effectively reduced the algal growth and degraded methylene blue under solar light. A total of 4 mg/L of Cu-VO was found to be effective for antialgal activity. Cu-VO degraded 93% of MB. The investigation of the mechanism of action of Cu-VO showed that ·OH mediated antialgal and dye degradation of M. aeruginosa and MB. Cu-VO also triggered the production of intracellular ROS in M. aeruginosa, leading to cell death. Thus, Cu-VO could be an effective catalyst for wastewater treatment.
Collapse
|