1
|
Cherif Y, Azzi H, Sridharan K, Ji S, Choi H, Allan MG, Benaissa S, Saidi-Bendahou K, Damptey L, Ribeiro CS, Krishnamurthy S, Nagarajan S, Maroto-Valer MM, Kuehnel MF, Pitchaimuthu S. Facile Synthesis of Gram-Scale Mesoporous Ag/TiO 2 Photocatalysts for Pharmaceutical Water Pollutant Removal and Green Hydrogen Generation. ACS OMEGA 2023; 8:1249-1261. [PMID: 36643558 PMCID: PMC9835632 DOI: 10.1021/acsomega.2c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
This work demonstrates a two-step gram-scale synthesis of presynthesized silver (Ag) nanoparticles impregnated with mesoporous TiO2 and evaluates their feasibility for wastewater treatment and hydrogen gas generation under natural sunlight. Paracetamol was chosen as the model pharmaceutical pollutant for evaluating photocatalytic performance. A systematic material analysis (morphology, chemical environment, optical bandgap energy) of the Ag/TiO2 photocatalyst powder was carried out, and the influence of material properties on the performance is discussed in detail. The experimental results showed that the decoration of anatase TiO2 nanoparticles (size between 80 and 100 nm) with 5 nm Ag nanoparticles (1 wt %) induced visible-light absorption and enhanced charge carrier separation. As a result, 0.01 g/L Ag/TiO2 effectively removed 99% of 0.01 g/L paracetamol in 120 min and exhibited 60% higher photocatalytic removal than pristine TiO2. Alongside paracetamol degradation, Ag/TiO2 led to the generation of 1729 μmol H2 g-1 h-1. This proof-of-concept approach for tandem pollutant degradation and hydrogen generation was further evaluated with rare earth metal (lanthanum)- and nonmetal (nitrogen)-doped TiO2, which also showed a positive response. Using a combination of ab initio calculations and our new theory model, we revealed that the enhanced photocatalytic performance of Ag/TiO2 was due to the surface Fermi-level change of TiO2 and lowered surface reaction energy barrier for water pollutant oxidation. This work opens new opportunities for exploiting tandem photocatalytic routes beyond water splitting and understanding the simultaneous reactions in metal-doped metal oxide photocatalyst systems under natural sunlight.
Collapse
Affiliation(s)
- Yassine Cherif
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
| | - Hajer Azzi
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
- Institut
des Sciences et de la Technologie, Université d’Ain
Témouchent, BP
284, 46000Ain Témouchent, Algeria
| | - Kishore Sridharan
- Department
of Nanoscience and Technology, School of Physical Sciences, University of Calicut, P. O. Thenhipalam673635, India
| | - Seulgi Ji
- Theoretical
Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939Cologne, Germany
| | - Heechae Choi
- Theoretical
Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939Cologne, Germany
| | - Michael G. Allan
- Department
of Chemistry, Swansea University, Singleton Park, SwanseaSA2 8PP, United Kingdom
| | - Sihem Benaissa
- Institut
des Sciences et de la Technologie, Université d’Ain
Témouchent, BP
284, 46000Ain Témouchent, Algeria
| | - Karima Saidi-Bendahou
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
| | - Lois Damptey
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Camila Silva Ribeiro
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Satheesh Krishnamurthy
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Sanjay Nagarajan
- Department
of Chemical Engineering, University of Bath, BathBA2 7AY, United Kingdom
| | - M. Mercedes Maroto-Valer
- Research
Centre for Carbon Solutions, Institute of Mechanical and Processing
Engineering, School of Engineering & Physical Science, Heriot-Watt University, EdinburghEH14 4AS, United Kingdom
| | - Moritz F. Kuehnel
- Department
of Chemistry, Swansea University, Singleton Park, SwanseaSA2 8PP, United Kingdom
- Fraunhofer
Institute for Wind Energy Systems IWES, Am Haupttor 4310, 06237Leuna, Germany
| | - Sudhagar Pitchaimuthu
- Research
Centre for Carbon Solutions, Institute of Mechanical and Processing
Engineering, School of Engineering & Physical Science, Heriot-Watt University, EdinburghEH14 4AS, United Kingdom
| |
Collapse
|
3
|
Improving Photoelectrochemical Activity of ZnO/TiO2 Core–Shell Nanostructure through Ag Nanoparticle Integration. Catalysts 2021. [DOI: 10.3390/catal11080911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In solar energy harvesting using solar cells and photocatalysts, the photoexcitation of electrons and holes in semiconductors is the first major step in the solar energy conversion. The lifetime of carriers, a key factor determining the energy conversion and photocatalysis efficiency, is shortened mainly by the recombination of photoexcited carriers. We prepared and tested a series of ZnO/TiO2-based heterostructures in search of designs which can extend the carrier lifetime. Time-resolved photoluminescence tests revealed that, in ZnO/TiO2 core–shell structure the carrier lifetime is extended by over 20 times comparing with the pure ZnO nanorods. The performance improved further when Ag nanoparticles were integrated at the ZnO/TiO2 interface to construct a Z-scheme structure. We utilized these samples as photoanodes in a photoelectrochemical (PEC) cell and analyzed their solar water splitting performances. Our data showed that these modifications significantly enhanced the PEC performance. Especially, under visible light, the Z-scheme structure generated a photocurrent density 100 times higher than from the original ZnO samples. These results reveal the potential of ZnO-Ag-TiO2 nanorod arrays as a long-carrier-lifetime structure for future solar energy harvesting applications.
Collapse
|
4
|
Wtulich M, Szkoda M, Gajowiec G, Gazda M, Jurak K, Sawczak M, Lisowska-Oleksiak A. Hydrothermal Cobalt Doping of Titanium Dioxide Nanotubes towards Photoanode Activity Enhancement. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1507. [PMID: 33808648 PMCID: PMC8003354 DOI: 10.3390/ma14061507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Doping and modification of TiO2 nanotubes were carried out using the hydrothermal method. The introduction of small amounts of cobalt (0.1 at %) into the structure of anatase caused an increase in the absorption of light in the visible spectrum, changes in the position of the flat band potential, a decrease in the threshold potential of water oxidation in the dark, and a significant increase in the anode photocurrent. The material was characterized by the SEM, EDX, and XRD methods, Raman spectroscopy, XPS, and UV-Vis reflectance measurements. Electrochemical measurement was used along with a number of electrochemical methods: chronoamperometry, electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry in dark conditions and under solar light illumination. Improved photoelectrocatalytic activity of cobalt-doped TiO2 nanotubes is achieved mainly due to its regular nanostructure and real surface area increase, as well as improved visible light absorption for an appropriate dopant concentration.
Collapse
Affiliation(s)
- Mariusz Wtulich
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (M.W.); (M.S.)
| | - Mariusz Szkoda
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (M.W.); (M.S.)
| | - Grzegorz Gajowiec
- Faculty of Mechanical Engineering and Ship Technology, Institute of Machine Technology and Materials, Gdansk University of Technology, 80-233 Gdansk, Poland;
| | - Maria Gazda
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk, Poland;
| | - Kacper Jurak
- Department of Electrochemistry, Corrosion and Materials Engineering, Chemical Faculty, Gdansk University of Technology, 80-233 Gdańsk, Poland;
| | - Mirosław Sawczak
- The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland;
| | - Anna Lisowska-Oleksiak
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (M.W.); (M.S.)
| |
Collapse
|
5
|
Abstract
The increasing rate of water and air pollution dramatically impacts natural ecosystems and human health causing depletion of biodiversity, climate changes, spreading of respiratory diseases, and, as a consequence, negatively impacting the world economy [...]
Collapse
|