Kovalenko V, Kotok V, Murashevych B. Layered Double Hydroxides as the Unique Product of Target Ionic Construction for Energy, Chemical, Foods, Cosmetics, Medicine and Ecology Applications.
CHEM REC 2024;
24:e202300260. [PMID:
37847884 DOI:
10.1002/tcr.202300260]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Layered Double Hydroxide (LDH) is an α-modification of the M-host (M2+ ) hydroxide, in which some part of the M-host cations is replaced by M-guest cations (M3+ or M4+ ). The emerging excess positive charge is compensated by the intercalation of anions into the interlayer space, which also contains water molecules. LDHs exhibit anion exchange properties. Targeted ionic design of LDHs via combining three components (M-host, M-guest cations, intercalated anions) allows the creation of a very wide range of highly efficient electrochemical, electrocatalytic, electrochromic substances, catalysts, ion exchangers, sorbents, color pigments, pharmacological drugs, food, and cosmetic additives. In this review, the structure and areas of application of LDHs are considered from the perspective of the targeted ionic design of a substance for a specific application.
Collapse