1
|
Yang L, Li Z, Chen C, Wang J, Yin Q, Zhang Y, Guo P. Assembly of Alloyed PdM (Ag, Cu, and Sn) Nanosheets and Their Electrocatalytic Oxidation of Ethanol and Methanol. Inorg Chem 2023; 62:15320-15328. [PMID: 37669563 DOI: 10.1021/acs.inorgchem.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Direct alcohol fuel cells are popular due to their high energy density, abundant sources, and ease of transportation and storage. Palladium-based nanosheet self-assembled materials have emerged as an effective catalyst for alcohol oxidation reactions. In this work, nanosheets were synthesized with the same feeding ratio assembly of alloyed PdM (M = Ag, Cu, and Sn). The introduction of the second element was able to enhance the catalytic response of the catalysts to alcohol electrooxidation. Among them, the PdCu alloy exhibited the best performance in terms of catalytic activity, toxicity resistance, and stability to ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR). The catalytic current densities for EOR can reach 2226, 2518, and 1598 mA mg-1 for PdAg, PdCu, and PdSn nanosheet assemblies, respectively. These are mainly attributed to better electronic effects, altered atomic distances within the cell for the d-band centers of Pd, and a larger electrochemical active surface area (ECSA). The optimized d-band center is beneficial to promote the catalytic performance of EOR and MOR. Experimental data also demonstrated that higher electrocatalytic temperature, higher pH, and higher alcohol concentration can accelerate the rate of alcohol electrooxidation. These results have the potential to be extended to Pd-M (M = other metals) nanosheets and help for a wider range of catalytic applications.
Collapse
Affiliation(s)
- Likang Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ze Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chen Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jiasheng Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Qizhi Yin
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yuxiang Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
2
|
Montaña-Mora G, Qi X, Wang X, Chacón-Borrero J, Martinez-Alanis PR, Yu X, Li J, Xue Q, Arbiol J, Ibáñez M, Cabot A. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Yang P, Zhang L, Wei X, Dong S, Cao W, Ma D, Ouyang Y, Xie Y, Fei J. A "Special" Solvent to Prepare Alloyed Pd 2Ni 1 Nanoclusters on a MWCNT Catalyst for Enhanced Electrocatalytic Oxidation of Formic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:755. [PMID: 36839122 PMCID: PMC9963789 DOI: 10.3390/nano13040755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Herein, an electrocatalyst with Pd2Ni1 nanoclusters, supporting multiwalled carbon nanotubes (MWCNTs) (referred to Pd2Ni1/CNTs), was fabricated with deep eutectic solvents (DES), which simultaneously served as reducing agent, dispersant, and solvent. The mass activity of the catalyst for formic acid oxidation reaction (FAOR) was increased nearly four times compared to a Pd/C catalyst. The excellent catalytic activity of Pd2Ni1/CNTs was ascribed to the special nanocluster structure and appropriate Ni doping, which changed the electron configuration of Pd to reduce the d-band and to produce a Pd-Ni bond as a new active sites. These newly added Ni sites obtained more OH- to release more effective active sites by interacting with the intermediate produced in the first step of FAOR. Hence, this study provides a new method for preparing a Pd-Ni catalyst with high catalytic performance.
Collapse
Affiliation(s)
- Pingping Yang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Li Zhang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xuejiao Wei
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Shiming Dong
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Wenting Cao
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Dong Ma
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Yuejun Ouyang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Yixi Xie
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Junjie Fei
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
4
|
Denis PA. Heteroatom Codoped Graphene: The Importance of Nitrogen. ACS OMEGA 2022; 7:45935-45961. [PMID: 36570263 PMCID: PMC9773818 DOI: 10.1021/acsomega.2c06010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Although graphene has exceptional properties, they are not enough to solve the extensive list of pressing world problems. The substitutional doping of graphene using heteroatoms is one of the preferred methods to adjust the physicochemical properties of graphene. Much effort has been made to dope graphene using a single dopant. However, in recent years, substantial efforts have been made to dope graphene using two or more dopants. This review summarizes all the hard work done to synthesize, characterize, and develop new technologies using codoped, tridoped, and quaternary doped graphene. First, I discuss a simple question that has a complicated answer: When can an atom be considered a dopant? Then, I briefly discuss the single atom doped graphene as a starting point for this review's primary objective: codoped or dual-doped graphene. I extend the discussion to include tridoped and quaternary doped graphene. I review most of the systems that have been synthesized or studied theoretically and the areas in which they have been used to develop new technologies. Finally, I discuss the challenges and prospects that will shape the future of this fascinating field. It will be shown that most of the graphene systems that have been reported involve the use of nitrogen, and much effort is needed to develop codoped graphene systems that do not rely on the stabilizing effects of nitrogen. I expect that this review will contribute to introducing more researchers to this fascinating field and enlarge the list of codoped graphene systems that have been synthesized.
Collapse
|
5
|
Cyanogel-Induced Synthesis of RuPd Alloy Networks for High-Efficiency Formic Acid Oxidation. Catalysts 2022. [DOI: 10.3390/catal12101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For direct formic acid fuel cells (DFAFC), palladium (Pd)-based alloy catalysts with competitive morphology and elemental composition are essential to boost the performance of the formic acid oxidation reaction (FAOR) in the anode zone. Herein, we design and synthesize RuPdx alloy nano-network structures (ANs) via the facile wet-chemical reduction of Pd-Ru cyanogel (Pdx [Ru(CN)6]y·aH2O) as an effective electrocatalyst for the FAOR. The formation of Pd-Ru cyanogel depends on the facile coordination of K2PdCl4 and K3 [Ru(CN)6]. The unique structure of cyanogel ensures the presentation of a three-dimensional mesoporous morphology and the homogeneity of the elemental components. The as-prepared RuPd3 ANs exhibit good electrocatalytic activity and stability for the FAOR. Notably, the RuPd3 ANs achieve a mass-specific activity of 2068.4 mA mg−1 in FAOR, which shows an improvement of approximately 16.9 times compared to Pd black. Such a competitive FAOR performance of RuPd3 ANs can be attributed to the advantages of structure and composition, which facilitate the exposure of more active sites, accelerate mass/electron transfer rates, and promote gas escape from the catalyst layer, as well as enhance chemical stability.
Collapse
|
6
|
Chemically prepared Pd-Cd alloy nanocatalysts as the highly active material for formic acid electrochemical oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Song L, Ahn J, Kim DH, Shin H, Kim ID. Porous Pd-Sn Alloy Nanotube-Based Chemiresistor for Highly Stable and Sensitive H 2 Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28378-28388. [PMID: 35679507 DOI: 10.1021/acsami.2c05002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While H2 is indispensable as a green fuel source, it is highly flammable and explosive. Because it is difficult to detect due to its lack of odor and color, a solution for proper monitoring of H2 leakage is essential to ensure safe handling. To this end, we have successfully fabricated hollow Pd-Sn alloy nanotubes (NTs) with a Brunauer-Emmett-Teller surface area of 223.0 m2/g through electrospinning and a subsequent etching method, which is the first demonstration of synthesizing Pd-based hollow alloy nanofibers with ultrafine grain sizes. We found that the alloying of Pd with Sn could effectively prevent degradation of the sensing performance upon the α-β phase transition during hydrogen detection. Besides, the highly porous structure with smaller nanograins offered more exposed active sites and higher gas accessibility to bulk materials. The resultant Pd-Sn NTs exhibited excellent sensitivity toward H2 (0.00005-3%). Notably, the limit of detection of 0.0001% is an outstanding achievement on H2 sensing among state-of-the-art H2 sensors. Moreover, when exposed to a high concentration of H2 (3%), Pd-Sn NTs showed excellent cycling stability with a standard deviation of 0.07% and a sensitivity of 9.27%. These obtained sensing results indicate that Pd-Sn NTs can be used as a highly sensitive and stable H2 gas sensor at room temperature (25 °C).
Collapse
Affiliation(s)
- Lu Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-virus & Air-quality Control, KI Nanocentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-virus & Air-quality Control, KI Nanocentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-virus & Air-quality Control, KI Nanocentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-virus & Air-quality Control, KI Nanocentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-virus & Air-quality Control, KI Nanocentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Safdar Hossain SK, Saleem J, Mudassir Ahmad Alwi M, Al-Odail FA, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. CHEM REC 2022; 22:e202200045. [PMID: 35733082 DOI: 10.1002/tcr.202200045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Direct formic acid fuel cells (DFAFCs) have gained immense importance as a source of clean energy for portable electronic devices. It outperforms other fuel cells in several key operational and safety parameters. However, slow kinetics of the formic acid oxidation at the anode remains the main obstacle in achieving a high power output in DFAFCs. Noble metal-based electrocatalysts are effective, but are expensive and prone to CO poisoning. Recently, a substantial volume of research work have been dedicated to develop inexpensive, high activity and long lasting electrocatalysts. Herein, recent advances in the development of anode electrocatalysts for DFAFCs are presented focusing on understanding the relationship between activity and structure. This review covers the literature related to the electrocatalysts based on noble metals, non-noble metals, metal-oxides, synthesis route, support material, and fuel cell performance. The future prospects and bottlenecks in the field are also discussed at the end.
Collapse
Affiliation(s)
- S K Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - M Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Faisal A Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Elghamry I, Al-Jendan SA, Saleh MM, Abdelsalam ME. Bimetallic nickel/manganese phosphate–carbon nanofiber electrocatalyst for the oxidation of formaldehyde in alkaline medium. RSC Adv 2022; 12:20656-20671. [PMID: 35919157 PMCID: PMC9292137 DOI: 10.1039/d2ra03359c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
The development of earth-abundant transition metal-based catalysts, supported by a conductive carbonaceous matrix, has received great attention in the field of conversion of formaldehyde derivatives into toxic-free species. Herein, we report a comprehensive investigation of bimetallic electrocatalyst activity towards the electrooxidation of formaldehyde. The bimetallic phosphate catalyst is prepared by co-precipitation of Ni and Mn phosphate precursors using a simple reflux approach. Then the bimetallic catalyst is produced by mixing the Ni/Mn with carbon fibres (CNFs). The structural properties and crystallinity of the catalyst were investigated by using several techniques, such as scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Brunauer Emmett−Teller theory. The system performance was studied under potentiostatic conditions. Some theoretical thermodynamic and kinetic models were applied to assess the system performance. Accordingly, key electrochemical parameters, including surface coverage (Γ) of active species, charge transfer rate (ks), diffusion coefficient of the formaldehyde (D), and catalytic rate constant (kcat) were calculated at Γ = 1.690 × 10−4 mmol cm−2, ks = 1.0800 s−1, D = 1.185 × 10−3 cm2 s−1 and kcat = 1.08 × 105 cm3 mol−1 s−1. These findings demonstrate the intrinsic electrocatalytic activity of formaldehyde electrooxidation on nickel/manganese phosphate- CNFs in alkaline medium. The catalytic performance of bimetallic Ni/Mn phosphate–carbon nanofiber composite catalyst is better than mono metallic catalysts toward electrooxidation of formaldehyde.![]()
Collapse
Affiliation(s)
- Ibrahim Elghamry
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - Samya A. Al-Jendan
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - M. M. Saleh
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - Mamdouh E. Abdelsalam
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
10
|
Zhang B, Zhang X, Yan J, Cao Z, Pang M, Chen J, Zang L, Guo P. Synthesis of Free‐Standing Alloyed PdSn Nanoparticles with Enhanced Catalytic Performance for Ethanol Electrooxidation. ChemElectroChem 2021. [DOI: 10.1002/celc.202101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ben Zhang
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Xingxue Zhang
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Jie Yan
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Zhengshuai Cao
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Lei Zang
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| |
Collapse
|
11
|
Bimetallic Pd-Co Nanoparticles Supported on Nitrogen-Doped Reduced Graphene Oxide as Efficient Electrocatalysts for Formic Acid Electrooxidation. Catalysts 2021. [DOI: 10.3390/catal11080910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this work, bimetallic PdxCoy nanoparticles supported on nitrogen-doped reduced graphene oxide catalysts were synthesized and tested for formic acid oxidation as potentially efficient and durable electrocatalysts. Graphene oxide was nitrogen doped through hydrothermal chemical reduction with urea as a nitrogen source. The PdxCoy nanoparticles were deposited on the nitrogen-doped graphene oxide support using the impregnation-reduction method with sodium borohydride as a reducing agent and sodium citrate dihydrate as a stabilizing agent. The structural features, such as phases, composition, oxidation states, and particle sizes, of the nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy–energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The Pd nanoparticle sizes in Pd1Co1/N-rGO, Pd/N-rGO, and Pd1Co1/CNT were 3.5, 12.51, and 4.62 nm, respectively. The electrochemical performance of the catalysts was determined by CO stripping, cyclic voltammetry, and chronoamperometry. Pd1Co1/N-rGO showed the highest mass activity of 4833.12 mA–1 mg Pd, which was twice that of Pd1Co1/CNT. Moreover, Pd1Co1/N-rGO showed a steady-state current density of 700 mA–1 mg Pd after 5000 s in chronoamperometry carried out at +0.35 V. Apart from the well-known bifunctional effect of Co, nitrogen-doped graphene contributed to the performance enhancement of the Pd1Co1/N-rGO catalyst.
Collapse
|