1
|
Kubas D, Beck JM, Kasisari E, Schätzler T, Becherer A, Fischer A, Krossing I. From CO 2 to DME: Enhancement through Heteropoly Acids from a Catalyst Screening and Stability Study. ACS OMEGA 2023; 8:15203-15216. [PMID: 37151500 PMCID: PMC10157840 DOI: 10.1021/acsomega.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
The direct synthesis of dimethyl ether (DME) via CO2 hydrogenation in a single step was studied using an improved class of bifunctional catalysts in a fixed bed reactor (T R: 210-270 °C; 40 bar; gas hourly space velocity (GHSV) 19,800 NL kgcat -1 h-1; ratio CO2/H2/N2 3:9:2). The competitive bifunctional catalysts tested in here consist of a surface-basic copper/zinc oxide/zirconia (CZZ) methanol-producing part and a variable surface-acidic methanol dehydration part and were tested in overall 45 combinations. As dehydration catalysts, zeolites (ferrierite and β-zeolite), alumina, or zirconia were tested alone as well as with a coating of Keggin-type heteropoly acids (HPAs), i.e., silicotungstic or phosphotungstic acid. Two different mixing methods to generate bifunctional catalysts were tested: (i) a single-grain method with intensive intra-particular contact between CZZ and the dehydration catalyst generated by mixing in an agate mortar and (ii) a dual-grain approach relying on physical mixing with low contact. The influence of the catalyst mixing method and HPA loading on catalyst activity and stability was investigated. From these results, a selection of best-performing bifunctional catalysts was investigated in extended measurements (time on stream: 160 h/7 days, T R: 250 and 270 °C; 40 bar; GHSV 19,800 NL kgcat -1 h-1; ratio CO2/H2/N2 3:9:2). Silicotungstic acid-coated bifunctional catalysts showed the highest resilience toward deactivation caused by single-grain preparation and during catalysis. Overall, HPA-coated catalysts showed higher activity and resilience toward deactivation than uncoated counterparts. Dual-grain preparation showed superior performance over single grain. Furthermore, silicotungstic acid coatings with 1 KU nm-2 (Keggin unit per surface area of carrier) on Al2O3 and ZrO2 as carrier materials showed competitive high activity and stability in extended 7-day measurements compared to pure CZZ. Therefore, HPA coating is found to be a well-suited addition to the CO2-to-DME catalyst toolbox.
Collapse
Affiliation(s)
- Dustin Kubas
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum (FMF), Universität
Freiburg, Stefan-Meier-Straße
21, 79104 Freiburg, Germany
| | - Jennifer Maria Beck
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum (FMF), Universität
Freiburg, Stefan-Meier-Straße
21, 79104 Freiburg, Germany
| | - Erdogan Kasisari
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
| | - Timo Schätzler
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
| | - Anita Becherer
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
| | - Anna Fischer
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum (FMF), Universität
Freiburg, Stefan-Meier-Straße
21, 79104 Freiburg, Germany
| | - Ingo Krossing
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum (FMF), Universität
Freiburg, Stefan-Meier-Straße
21, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Guffanti S, Visconti CG, Groppi G. Model Analysis of the Role of Kinetics, Adsorption Capacity, and Heat and Mass Transfer Effects in Sorption Enhanced Dimethyl Ether Synthesis. Ind Eng Chem Res 2021; 60:6767-6783. [PMID: 34054215 PMCID: PMC8154431 DOI: 10.1021/acs.iecr.1c00521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
The role of kinetics, adsorption capacity, and heat and mass transfer effects in the sorption enhanced dimethyl ether synthesis (SEDMES) is investigated by means of a 2D+1D model of a single tube of an industrial-scale, externally cooled, multitubular reactor that simulates the reaction/adsorption step of the SEDMES cycle. The effect of the adsorbent/catalyst weight ratio is analyzed, showing that a trade-off between DME productivity and yield originates from the balance of kinetics and adsorption capacity in the reactor tube. The effects of internal diffusion in catalyst particles are shown to have a strong impact on effective reaction rates: significant yield/productivity improvements are obtained when using a mechanical mixture of catalysts with small particle diameters or by rearranging the distribution of the two active phases in hybrid or core@shell pellets. The thermal effects in the reactor, which are increasingly critical upon intensifying the SEDMES process conditions, are also addressed.
Collapse
Affiliation(s)
- Simone Guffanti
- Laboratory of Catalysis and
Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, Milano 20156, Italy
| | - Carlo Giorgio Visconti
- Laboratory of Catalysis and
Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, Milano 20156, Italy
| | - Gianpiero Groppi
- Laboratory of Catalysis and
Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, Milano 20156, Italy
| |
Collapse
|
3
|
Numerical Investigation of Process Enhancement Using a Bifunctional Catalyst in a Dual Fluidized-Bed Reactor. Catalysts 2021. [DOI: 10.3390/catal11050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The paper outlines the concept of process intensification and integration, with a particular focus on sorption-enhanced, solid-catalyzed chemical processes. An alternative and attractive solution to a system of parallel fixed-bed apparatuses is evaluated, which utilizes the solids’ circulation in a dual fluidized-bed reactor–regenerator system. This allows for continuous mode operation and greatly simplifies the control procedures. To illustrate some aspects related to the steady-state operation of such a dual system, a simplified mathematical model of two interconnected fluidized beds operating in the bubbling regime was developed. A generic reversible chemical reaction of the overall second-order, catalyzed by bifunctional pellets, integrating catalytic active sites and adsorption sites, was considered as a test case. The model was used to study the effects of the bed hydrodynamics, as well as of the chemical reaction and physical adsorption equilibrium constants. It was shown how the superposition of various chemical, physical and hydrodynamical phenomena affects the performance of the system.
Collapse
|
4
|
Delgado Otalvaro N, Sogne G, Herrera Delgado K, Wild S, Pitter S, Sauer J. Kinetics of the direct DME synthesis from CO 2 rich syngas under variation of the CZA-to-γ-Al 2O 3 ratio of a mixed catalyst bed. RSC Adv 2021; 11:24556-24569. [PMID: 35481015 PMCID: PMC9036900 DOI: 10.1039/d1ra03452a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/03/2021] [Indexed: 01/08/2023] Open
Abstract
The one-step synthesis of dimethyl ether over mechanical mixtures of Cu/ZnO/Al2O3 (CZA) and γ-Al2O3 was studied in a wide range of process conditions. Experiments were performed at an industrially relevant pressure of 50 bar varying the carbon oxide ratio in the feed (CO2 in COx from 20 to 80%), temperature (503–533 K), space-time (240–400 kgcat s mgas−3), and the CZA-to-γ-Al2O3 weight ratio (from 1 to 5). Factors favoring the DME production in the investigated range of conditions are an elevated temperature, a low CO2 content in the feed, and a CZA-to-γ-Al2O3 weight ratio of 2. A lumped kinetic model was parameterized to fit the experimental data, resulting in one of the predictive models with the broadest range of validity in the open literature for the CZA/γ-Al2O3 system. Experimental and numerical kinetic investigations for the direct DME synthesis resulted in one of the predictive models with the broadest range of validity in the open literature for the CZA/γ-Al2O3 system.![]()
Collapse
Affiliation(s)
| | - Gerardo Sogne
- Karlsruher Institute of Technology (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | | | - Stefan Wild
- Karlsruher Institute of Technology (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Stephan Pitter
- Karlsruher Institute of Technology (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Jörg Sauer
- Karlsruher Institute of Technology (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|