Talmazan RA, Refugio Monroy J, del Río‐Portilla F, Castillo I, Podewitz M. Encapsulation Enhances the Catalytic Activity of C-N Coupling: Reaction Mechanism of a Cu(I)/Calix[8]arene Supramolecular Catalyst.
ChemCatChem 2022;
14:e202200662. [PMID:
36605358 PMCID:
PMC9804476 DOI:
10.1002/cctc.202200662]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Development of C-N coupling methodologies based on Earth-abundant metals is a promising strategy in homogeneous catalysis for sustainable processes. However, such systems suffer from deactivation and low catalytic activity. We here report that encapsulation of Cu(I) within the phenanthroyl-containing calix[8]arene derivative 1,5-(2,9-dimethyl-1,10-phenanthroyl)-2,3,4,6,7,8-hexamethyl-p-tert-butylcalix[8]arene (C8PhenMe6 ) significantly enhances C-N coupling activity up to 92 % yield in the reaction of aryl halides and aryl amines, with low catalyst loadings (2.5 % mol). A tailored multiscale computational protocol based on Molecular Dynamics simulations and DFT investigations revealed an oxidative addition/reductive elimination process of the supramolecular catalyst [Cu(C8PhenMe6)I]. The computational investigations uncovered the origins of the enhanced catalytic activity over its molecular analogues: Catalyst deactivation through dimerization is prevented, and product release facilitated. Capturing the dynamic profile of the macrocycle and the impact of non-covalent interactions on reactivity allows for the rationalization of the behavior of the flexible supramolecular catalysts employed.
Collapse