Bazhenova MA, Kulikov LA, Makeeva DA, Maximov AL, Karakhanov EA. Hydrodeoxygenation of Lignin-Based Compounds over Ruthenium Catalysts Based on Sulfonated Porous Aromatic Frameworks.
Polymers (Basel) 2023;
15:4618. [PMID:
38232050 PMCID:
PMC10708665 DOI:
10.3390/polym15234618]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Bifunctional catalysts are a major type of heterogeneous catalytic systems that have been widely investigated for biomass upgrading. In this work, Ru-catalysts based on sulfonated porous aromatic frameworks (PAFs) were used in the hydrodeoxygenation (HDO) of lignin-derived compounds: guaiacol, veratrole, and catechol. The relationship between the activity of metal nanoparticles and the content of acid sites in synthesized catalysts was studied. Herein, their synergy was demonstrated in the Ru-PAF-30-SO3H/5-COD catalyst. The results revealed that this catalytic system promoted partial hydrogenation of lignin-based compounds to ketones without any further transformations. The design of the Ru-PAF-30-SO3H/5-COD catalytic system opens a promising route to the selective conversion of lignin model compounds to cyclohexanone.
Collapse