1
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Yang J, Wang S, Han Y, Wang C, Li J, Zhou H. Visible-Light-Mediated Azidation of α-Diazoesters with TMSN 3 via Direct Photoexcitation and S H2 Mechanism. J Org Chem 2024; 89:11707-11715. [PMID: 39080508 DOI: 10.1021/acs.joc.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A visible light-mediated azidation of α-diazoesters with TMSN3 to synthesize valuable α-azidoesters has been developed. Without using any catalysts and additives, the reaction proceeded smoothly under visible light irradiation at room temperature. A variety of α-diazoesters were successfully converted to the desired α-azidoesters, showing good functional group tolerance. The products could be readily transformed into triazole, α-azidoacid, and α-azidoamide. Mechanistic studies suggested that the reaction is mainly carrying out via direct photoexcitation and SH2 mechanism. This work provides a novel, mild, and practical protocol for synthesizing α-azidoesters.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shengyu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yating Han
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cunhui Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiangjiang Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Liang Y, Huang H, Huang N, Liao L, Zhao X. Catalytic Enantioselective Construction of Chiral γ-Azido Nitriles through Nitrile Group-Promoted Electrophilic Reaction of Alkenes. Org Lett 2023; 25:6757-6762. [PMID: 37656917 DOI: 10.1021/acs.orglett.3c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
An efficient approach for the construction of enantioenriched γ-azido nitriles through the chiral sulfide-catalyzed asymmetric electrophilic thioazidation of allylic nitriles is disclosed. A wide range of electron-deficient and -rich aryl, heterocyclic aryl, and alkyl substituents are suitable on the substrates of allylic nitriles. The regio-, enantio-, and diastereoselectivities of the reactions are excellent. As versatile platform molecules, the obtained chiral γ-azido nitriles can be easily converted into high-value-added chiral molecules that are not easily accessed by other methods. Control experiments revealed that the allylic nitrile group is important for control of the reactivity and enantioselectivity of the reaction leading to a broad substrate scope.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hongtai Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Nan Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
4
|
Neighboring Nitrogen Atom-Induced Reactions of Azidoacetyl Hydrazides, including Unexpected Nitrogen-Nitrogen Bond Cleavage of the Hydrazide. ORGANICS 2022. [DOI: 10.3390/org3040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We studied the hydrazide compounds of the α-azidoacetyl group, which showed specific click reactivity by the intramolecular hydrogen bonding between the azido group and the N-H of the hydrazide moiety. In the competitive click reactions with a general alkyl azide, both traceless and non-traceless Staudinger-Bertozzi ligation occurred azide-site-selectively by the acceleration effect of the hydrogen bonding. However, the product obtained from the traceless reaction was further transformed into heterocyclic compounds. In addition, in an attempt at a synthesis of naphthalimide-possessing azidoacetyl hydrazide, nitrogen-nitrogen bond cleavage of the azidoacetyl hydrazides occurred to give the reduced amine product. These unexpected results could help design molecules for the successful Staudinger-Bertozzi ligation of the hydrazide compounds and develop a new nitrogen-nitrogen bond cleavage method.
Collapse
|
5
|
Cao TY, Qi L, Dong W, Yan ZM, Ji SC, Du JL, Zhang L, Li W, Wang LJ. NIS-Promoted Selective Amino-Diazidation and Amino-Iodoazidation of O-Homoallyl Benzimidates: Synthesis of Vicinal Diazido 1,3-Oxazines and Vicinal Iodoazido 1,3-Oxazines. J Org Chem 2022; 87:16578-16591. [PMID: 36450035 DOI: 10.1021/acs.joc.2c02252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Amines, especially those with multi-nitrogen moieties, are widespread in natural products and biologically active compounds. Thus, the development of direct and efficient methods to introduce multiple nitrogen-containing fragments into compounds in one step is highly desirable yet challenging. Herein, we report an NIS-promoted selective amino-diazidation and amino-iodoazidation of O-homoallyl benzimidates with NaN3. By using this protocol, a variety of vicinal diazido-substituted 1,3-oxazines and vicinal iodoazido-substituted 1,3-oxazines were directly synthesized in a controllable manner. Preliminary mechanistic investigations revealed that the reaction operates through a NIS-promoted four-step cascade process. The developed method has the merits of metal-free, excellent functional group compatibility, simple operation, and mild conditions.
Collapse
Affiliation(s)
- Tong-Yang Cao
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Lin Qi
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Wei Dong
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Zhi-Min Yan
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Shi-Chao Ji
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Jian-Long Du
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Linlin Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Wei Li
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| |
Collapse
|
6
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022; 61:e202206308. [DOI: 10.1002/anie.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xiaobin Xu
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Hantao Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Yiyang Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xianfeng Zhuo
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| |
Collapse
|
7
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yiyi Weng
- Zhejiang University of Technology College of Pharmaceutical Science Chaowang road 18 310014 Hangzhou CHINA
| | - Xiaobin Xu
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Hantao Chen
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Yiyang Zhang
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Xianfeng Zhuo
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| |
Collapse
|
8
|
Abegg T, Cossy J, Meyer C. Cascade Cope/Winstein Rearrangements: Synthesis of Azido-Cycloheptadienes from Dialkenylcyclopropanes Possessing a Vinyl Azide. Org Lett 2022; 24:4954-4959. [PMID: 35787030 DOI: 10.1021/acs.orglett.2c01888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cis-1,2-Dialkenylcyclopropanes incorporating a vinyl azide, generated by Knoevenagel condensations between the corresponding cyclopropanecarbaldehydes and α-azido ketones, undergo cascade Cope and Winstein [3,3]-sigmatropic rearrangements, under mild conditions. The sequence allows access to diversely substituted 1,4-cycloheptadienes armed with a secondary allylic azide with up to three stereocenters.
Collapse
Affiliation(s)
- Thomas Abegg
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin 75005 Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin 75005 Paris, France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
9
|
He C, Wu Z, Zhou Y, Cao W, Feng X. Asymmetric catalytic nitrooxylation and azidation of β-keto amides/esters with hypervalent iodine reagents. Org Chem Front 2022. [DOI: 10.1039/d1qo01634b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral Lewis acid-catalyzed enantioselective nitrooxylation and azidation of cyclic and acyclic β-keto amides/esters with hypervalent iodine(iii) reagents.
Collapse
Affiliation(s)
- Changqiang He
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhikun Wu
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Seki M, Takahashi Y. Regioselective C-H Azidation of Anilines and Application to Synthesis of Key Intermediate for Pharmaceutical. J Org Chem 2021; 86:7842-7848. [PMID: 34038109 DOI: 10.1021/acs.joc.1c00734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A catalytic system for regioselective C-H azidation of inactive anilines was developed. In the presence of CuSO4·5H2O, simultaneous addition of NaN3 and Na2S2O8 to aq. CH3CN solution of free anilines under weakly acidic conditions (pH 4.5) smoothly underwent C-H azidation to provide corresponding α-azidated products in high yields. Methyl α-azidoanthranilate obtained by this method was readily transformed via simple reduction followed by cyclization to methyl 2-ethoxybenzimidazol-7-carboxylate, a key intermediate for antihypertensive Candesartan Cilexetil.
Collapse
Affiliation(s)
- Masahiko Seki
- MA Group, Tokuyama Corporation 40, Wadai, Tsukuba, Ibaraki 300-4247, Japan
| | - Yusuke Takahashi
- MA Group, Tokuyama Corporation 40, Wadai, Tsukuba, Ibaraki 300-4247, Japan
| |
Collapse
|
11
|
Xin W, Guo S, Zhang Y, Zhang Z, Zhang G, Ye Y, Sun K. Metal‐Free, organic selenium enabled radical relay azidation‐carbocyclization. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sa Guo
- Henan Normal University CHINA
| | | | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education CHINA
| | | | | | - Kai Sun
- Anyang Normal University CHINA
| |
Collapse
|
12
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front 2021. [DOI: 10.1039/d1qo01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intramolecular hydrogen bonding in the α-azido secondary acetamides (α-AzSAs) enabled site-selective integration onto the diazide modular hubs even without steric hindrance.
Collapse
Affiliation(s)
- Koshiro Maegawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Seiji Onishi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|