1
|
Kaneko T, Yabushita M, Osuga R, Sawada Y, Sato K, Liu B, Nakagawa Y, Nakajima K, Tomishige K. Formation of paired Ga sites in CHA-type zeolite frameworks via a transcription-induced method. Chem Commun (Camb) 2024. [PMID: 38465472 DOI: 10.1039/d4cc00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Paired Ga sites represented by the Ga-O-Si-O-Ga sequence were firstly formed intentionally in CHA-type zeolite frameworks via the transcription of pre-formed paired Ga species in a Ga-rich amorphous silica-gallia under seed-assisted hydrothermal conditions. Such paired Ga sites behaved as ion-exchange sites for capturing divalent cation, Co2+.
Collapse
Affiliation(s)
- Takumi Kaneko
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Ryota Osuga
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yugo Sawada
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Kei Sato
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Ben Liu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Kiyotaka Nakajima
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
2
|
Ma YK, Alomar TS, AlMasoud N, El-Bahy ZM, Chia S, Daou TJ, Khoerunnisa F, Ling TC, Ng EP. Effects of Synthesis Variables on SAPO-34 Crystallization Templated Using Pyridinium Supramolecule and Its Catalytic Activity in Microwave Esterification Synthesis of Propyl Levulinate. Catalysts 2023. [DOI: 10.3390/catal13040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
A detailed investigation of the hydrothermal crystallization of SAPO-34 in the presence of the novel 1-propylpyridinium hydroxide ([PrPy]OH) organic structural directing agent is presented. The synthesis conditions are systematically tuned to investigate the effects of various parameters (viz. concentrations of each reactant, crystallization time, and temperature) on the nucleation and crystallization of SAPO-34. The results show that a careful variation in each of the synthesis parameters results in the formation of competing phases such as SAPO-5, SAPO-35, and SAPO-36. Pure and fully crystalline SAPO-34 can be crystallized using a precursor hydrogel of a molar ratio of 2.0 Al: 4.7 P: 0.9 Si: 6.7 [PrPy]OH: 148 H2O at 200 °C for only 19 h, which is a shorter time than that found in previous studies. The prepared SAPO-34 is also very active in the esterification of levulinic acid and 1-propanol. By using microwave heating, 91.5% conversion with 100% selectivity toward propyl levulinate is achieved within 20 min at 190 °C. Hence, the present study may open a new insight into the optimum synthesis study of other zeolites using novel pyridinium organic moieties and the opportunity of replacing conventional harmful and non-recyclable homogeneous catalysts in levulinate biofuel synthesis.
Collapse
Affiliation(s)
- Yik-Ken Ma
- School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Taghrid S. Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Stephen Chia
- Centre for Global Archaeological Research, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - T. Jean Daou
- Axe Matériaux à Porosités Contrôlées, Institut de Science de Matériaux de Mulhouse UMR 7361, ENSCMu, Université de Haute-Alsace, 3b Rue Alfred Werner, 68093 Mulhouse, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Fitri Khoerunnisa
- Chemistry Education Department, Universitas Pendidikan Indonesia, Jl. Setiabudhi 258, Bandung 40514, Indonesia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
3
|
Toyoda H, Osuga R, Wang Y, Park S, Yazawa K, Gies H, Gilbert CJ, Yilmaz B, Kelkar CP, Yokoi T. Clarification of acid site location in MSE-type zeolites by spectroscopic approaches combined with catalytic activity: comparison between UZM-35 and MCM-68. Phys Chem Chem Phys 2022; 24:4358-4365. [PMID: 35112119 DOI: 10.1039/d2cp00215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MSE-type zeolites synthesized by different organic structure-directing agents (OSDAs), UZM-35 and MCM-68, were prepared. The location of Brønsted acid sites derived from the framework Al atoms and acidic properties were investigated based on 27Al MQMAS NMR and in situ IR techniques combined with the evaluation of the catalytic activity. We have successfully found a significant difference in the location of Brønsted acid sites in the MSE-type framework; 61 and 33% of acid sites were located at the 12-ring channel for MCM-68 and UZM-35, respectively. The differences in the location of the acid sites yielded their unique catalytic activities for the hydrocarbon cracking reactions, indicating that a well-chosen type of OSDAs for the synthesis is one of the possibilities for controlling the distribution of the framework Al atoms in the MSE-type framework.
Collapse
Affiliation(s)
- Hiroto Toyoda
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Ryota Osuga
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yong Wang
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Sungsik Park
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Koji Yazawa
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Hermann Gies
- Institute of Geology, Mineralogy und Geophysics, Ruhr-University Bochum, 44780 Bochum, Germany.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Christopher J Gilbert
- R&D Refining Catalysts, BASF Corporation, 25 Middlesex-Essex Turnpike, Iselin, 08830 Iselin, USA
| | - Bilge Yilmaz
- R&D Refining Catalysts, BASF Corporation, 25 Middlesex-Essex Turnpike, Iselin, 08830 Iselin, USA
| | - C P Kelkar
- R&D Refining Catalysts, BASF Corporation, 25 Middlesex-Essex Turnpike, Iselin, 08830 Iselin, USA
| | - Toshiyuki Yokoi
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan. .,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
4
|
Taherizadeh A, Harpf A, Simon A, Choi J, Richter H, Voigt I, Stelter M. Thermochemical study of the structural stability of low-silicate CHA zeolite crystals. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
Yabushita M, Imanishi Y, Xiao T, Osuga R, Nishitoba T, Maki S, Kanie K, Cao W, Yokoi T, Muramatsu A. Transcription-induced formation of paired Al sites in high-silica CHA-type zeolite framework using Al-rich amorphous aluminosilicate. Chem Commun (Camb) 2021; 57:13301-13304. [PMID: 34812445 DOI: 10.1039/d1cc05401e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The paired Al species pre-formed in Al-rich amorphous aluminosilicates were transcribed into high-silica CHA-type zeolite frameworks under hydrothermal conditions, which offers a new approach to creating paired Al sites in zeolite frameworks. This Al-pair-rich CHA exhibited a higher Sr2+ uptake than the control CHA zeolite synthesized by the conventional procedure.
Collapse
Affiliation(s)
- Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Yoshiyasu Imanishi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Ting Xiao
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ryota Osuga
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Toshiki Nishitoba
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Sachiko Maki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kiyoshi Kanie
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Wenbin Cao
- Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Toshiyuki Yokoi
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Atsushi Muramatsu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
6
|
Devos J, Shah MA, Dusselier M. On the key role of aluminium and other heteroatoms during interzeolite conversion synthesis. RSC Adv 2021; 11:26188-26210. [PMID: 35479451 PMCID: PMC9037665 DOI: 10.1039/d1ra02887a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023] Open
Abstract
Interzeolite conversion, a synthesis technique for several zeolite frameworks, has recently yielded a large amount of high-performing catalytic zeolites. Yet, the mechanisms behind the success of interzeolite conversion remain unknown. Conventionally, small oligomers with structural similarity between the parent and daughter zeolites have been proposed, despite the fact these have never been observed experimentally. Moreover, recent synthesis examples contradict the theory that structural similarity between the parent and daughter zeolites enhances interzeolite conversion. In this perspective it is proposed that heteroatoms, such as aluminium, are key players in the processes that determine the successful conversion of the parent zeolite. The role of Al during parent dissolution, and all consecutive stages of crystallization, are discussed by revising a vast body of literature. By better understanding the role of Al during interzeolite conversions, it is possible to elucidate some generic features and to propose some synthetic guidelines for making advantageous catalytic zeolites. The latter analysis was also expanded to the interconversion of zeotype materials where heteroatoms such as tin are present. The crucial roles of aluminium in driving and controlling interzeolite conversion, a useful catalyst synthesis protocol, are put under scrutiny.![]()
Collapse
Affiliation(s)
- Julien Devos
- Department of Microbial and Molecular Systems, Centre for Sustainable Catalysis and Engineering (CSCE), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium www.dusselier-lab.org
| | - Meera A Shah
- Department of Microbial and Molecular Systems, Centre for Sustainable Catalysis and Engineering (CSCE), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium www.dusselier-lab.org
| | - Michiel Dusselier
- Department of Microbial and Molecular Systems, Centre for Sustainable Catalysis and Engineering (CSCE), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium www.dusselier-lab.org
| |
Collapse
|
7
|
Microporous Zeolites and Related Nanoporous Materials: Synthesis, Characterization and Application in Catalysis. Catalysts 2021. [DOI: 10.3390/catal11030382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microporous zeolites and related nanoporous materials have been studied intensively in academic and industrial laboratories around the world [...]
Collapse
|