1
|
Li Y, Li J, Yu T, Qiu L, Hasan SMN, Yao L, Pan H, Arafin S, Sadaf SM, Zhu L, Zhou B. Rh/InGaN 1-xO x nanoarchitecture for light-driven methane reforming with carbon dioxide toward syngas. Sci Bull (Beijing) 2024; 69:1400-1409. [PMID: 38402030 DOI: 10.1016/j.scib.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Light-driven dry reforming of methane toward syngas presents a proper solution for alleviating climate change and for the sustainable supply of transportation fuels and chemicals. Herein, Rh/InGaN1-xOx nanowires supported by silicon wafer are explored as an ideal platform for loading Rh nanoparticles, thus assembling a new nanoarchitecture for this grand topic. In combination with the remarkable photo-thermal synergy, the O atoms in Rh/InGaN1-xOx can significantly lower the apparent activation energy of dry reforming of methane from 2.96 eV downward to 1.70 eV. The as-designed Rh/InGaN1-xOx NWs nanoarchitecture thus demonstrates a measurable syngas evolution rate of 180.9 mmol gcat-1 h-1 with a marked selectivity of 96.3% under concentrated light illumination of 6 W cm-2. What is more, a high turnover number (TON) of 4182 mol syngas per mole Rh has been realized after six reuse cycles without obvious activity degradation. The correlative 18O isotope labeling experiments, in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and in-situ diffuse reflectance Fourier transform infrared spectroscopy characterizations, as well as density functional theory calculations reveal that under light illumination, Rh/InGaN1-xOx NWs facilitate releasing *CH3 and H+ from CH4 by holes, followed by H2 evolution from H+ reduction with electrons. Subsequently, the O atoms in Rh/InGaN1-xOx can directly participate in CO generation by reacting with the *C species from CH4 dehydrogenation and contributes to the coke elimination, in concurrent formation of O vacancies. The resultant O vacancies are then replenished by CO2, showing an ideal chemical loop. This work presents a green strategy for syngas production via light-driven dry reforming of methane.
Collapse
Affiliation(s)
- Yixin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianqi Yu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Syed M Najib Hasan
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Lin Yao
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| | - Hu Pan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shamsul Arafin
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sharif Md Sadaf
- Centre Energie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS)-Université du Québec, Varennes J3X 1E4, Canada.
| | - Lei Zhu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|