1
|
Santos MPF, Junior ECS, Bonomo RCF, Santos LS, Veloso CM. Hydrolysis of Casein by Pepsin Immobilized on Heterofunctional Supports to Produce Antioxidant Peptides. Appl Biochem Biotechnol 2024; 196:8605-8626. [PMID: 38888698 DOI: 10.1007/s12010-024-04988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
A study was carried out on the immobilization of pepsin in activated carbon functionalized by different techniques (glutaraldehyde, genipin, and metallization) aiming at its application in obtaining bioactive peptides through casein hydrolysis. Studies of the immobilized derivatives were carried out in addition to the evaluation of the antioxidant potential of the peptides. Among the pH range studied, pH 3.0 was selected due to the higher activity of the derivatives at this pH. The support modification by metallization was the method with the best results, providing a 121% increase in enzymatic activity compared to other immobilization methods. In addition, this derivative provided activity closer to the soluble enzyme activity (3.30 U) and better storage stability, and allows reuse for more than 8 cycles. In turn, the peptides from casein hydrolysis showed potential as antioxidant agents, with a DPPH radical scavenging activity higher than 70%, maximum protection against β-carotene oxidation close to 70%, and a maximum reducing power of Fe(III) into Fe(II) of 400 uM by the FRAP assay. The results showed that the new techniques for modification of activated carbon can be a promising approach for pepsin immobilization.
Collapse
Affiliation(s)
- Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
- Applied Microbiology Laboratory - Agroindustry, Santa Cruz State University, Rod. Jorge Amado, Km 16, S/N, Ilhéus, BA, 45662-900, Brazil
| | - Evaldo C S Junior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
| | - Leandro Soares Santos
- Laboratory of Packaging and Agro-Industrial Projects, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil.
| |
Collapse
|
2
|
Santos MPF, Ferreira MA, Junior ECS, Bonomo RCF, Veloso CM. Functionalized activated carbon as support for trypsin immobilization and its application in casein hydrolysis. Bioprocess Biosyst Eng 2023; 46:1651-1664. [PMID: 37728765 DOI: 10.1007/s00449-023-02927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
This study aimed to immobilize trypsin on activated carbon submitted to different surface modifications and its application in casein hydrolysis. With the aim of determining which support can promote better maintenance of the immobilized enzyme. Results showed that pH 5.0 was obtained as optimal for immobilization and pH 9.0 for the casein hydrolysis reaction for activated carbon and glutaraldehyde functionalized carbon. Among the supports used, activated carbon modified with iron ions in the presence of a chelating agent was the one that showed best results, under the conditions evaluated in this study. Presenting an immobilization yield of 95.15% and a hydrolytic activity of 4.11 U, same as soluble enzyme (3.76 U). This derivative kept its activity stable at temperatures above 40 °C for1 h and when stored for 30 days at 5 °C. Furthermore, it was effective for more than 6 reuse cycles (under the same conditions as the 1st cycle). In general, immobilization of trypsin on metallized activated carbon can be an alternative to biocatalysis, highlighting the advantages of protease immobilization.
Collapse
Affiliation(s)
- Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil
| | - Matheus A Ferreira
- Graduate Program in Agronomy, State University of Southwest Bahia, Estrada Bem Querer, km-04 s/n, Vitória da Conquista, BA, 45083-900, Brazil
| | - Evaldo C S Junior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil.
| |
Collapse
|
3
|
Akbari V, Mohammadi S, Mehrabi M, Ghobadi S, Farrokhi A, Khodarahmi R. Investigation of the role of prolines 232/233 in RTPPK motif in tau protein aggregation: An in vitro study. Int J Biol Macromol 2022; 219:1100-1111. [PMID: 36049563 DOI: 10.1016/j.ijbiomac.2022.08.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Disease-related tau protein in Alzheimer's disease is hyperphosphorylated and aggregates into neurofibrillary tangles. The cis-proline isomer of the pSer/Thr-Pro sequence has been proposed to act as a precursor of aggregation ('Cistauosis' hypothesis), but this aggregation scheme is not yet entirely accepted. Hence to investigate isomer-specific-aggregation of tau, proline residues at the RTPPK motif were replaced by alanine residues (with permanent trans configuration) employing genetic engineering methods. RTPAK, RTAPK, and RTAAK mutant variants of tau were generated, and their in vitro aggregation propensity was investigated using multi-spectroscopic techniques. Besides, the cell toxicity of oligomers/fibrils was analyzed and compared to those of the wild-type (WT) tau. Analyses of mutant variants have shown to be in agreement (to some degree) to the theory of the 'cistauosis' hypothesis. The results showed that the trans isomer in the 232-rd residue (P232A mutant rather than P233A) had reduced aggregation propensity. However, this study did not illustrate any statistically significant difference between the wild and the mutant protein aggregations concerning cell toxicity.
Collapse
Affiliation(s)
- Vali Akbari
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Alireza Farrokhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran.
| |
Collapse
|
4
|
Kasza G, Stumphauser T, Bisztrán M, Szarka G, Hegedüs I, Nagy E, Iván B. Thermoresponsive Poly( N, N-diethylacrylamide- co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers (Basel) 2021; 13:987. [PMID: 33806995 PMCID: PMC8004754 DOI: 10.3390/polym13060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Responsive (smart, intelligent, adaptive) polymers have been widely explored for a variety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropylacrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, characterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with various comonomer contents and monomer/initiator ratios are reported. It was found that all the investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hysteresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct, one-step reaction, leading to enzyme-polymer nanoparticle (EPNP) with average size of 56.9 nm. This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the enzyme-polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced by conjugation the with P(DEAAm-co-GMA) copolymer.
Collapse
Affiliation(s)
- György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Márk Bisztrán
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Imre Hegedüs
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37–47, H-1094 Budapest, Hungary
| | - Endre Nagy
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| |
Collapse
|