1
|
Fatemi K, Lau SY, Obayomi KS, Kiew SF, Coorey R, Chung LY, Fatemi R, Heshmatipour Z, Premarathna KSD. Carbon nanomaterial-based aptasensors for rapid detection of foodborne pathogenic bacteria. Anal Biochem 2024; 695:115639. [PMID: 39127327 DOI: 10.1016/j.ab.2024.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Each year, millions of people suffer from foodborne illness due to the consumption of food contaminated with pathogenic bacteria, which severely challenges global health. Therefore, it is essential to recognize foodborne pathogens swiftly and correctly. However, conventional detection techniques for bacterial pathogens are labor-intensive, low selectivity, and time-consuming, highlighting a notable knowledge gap. A novel approach, aptamer-based biosensors (aptasensors) linked to carbon nanomaterials (CNs), has shown the potential to overcome these limitations and provide a more reliable method for detecting bacterial pathogens. Aptamers, short single-stranded DNA (ssDNA)/RNA molecules, serve as bio-recognition elements (BRE) due to their exceptionally high affinity and specificity in identifying foodborne pathogens such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes, Campylobacter jejuni, and other relevant pathogens commonly associated with foodborne illnesses. Carbon nanomaterials' high surface area-to-volume ratio contributes unique characteristics crucial for bacterial sensing, as it improves the binding capacity and signal amplification in the design of aptasensors. Furthermore, aptamers can bind to CNs and create aptasensors with improved signal specificity and sensitivity. Hence, this review intends to critically review the current literature on developing aptamer functionalized CN-based biosensors by transducer optical and electrochemical for detecting foodborne pathogens and explore the advantages and challenges associated with these biosensors. Aptasensors conjugated with CNs offers an efficient tool for identifying foodborne pathogenic bacteria that is both precise and sensitive to potentially replacing complex current techniques that are time-consuming.
Collapse
Affiliation(s)
- Kiyana Fatemi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia.
| | - Kehinde Shola Obayomi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Siaw Fui Kiew
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Reza Fatemi
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - K S D Premarathna
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| |
Collapse
|
2
|
Lim SY, Younis SA, Kim KH, Lee J. The potential utility of dendritic fibrous nanosilica as an adsorbent and a catalyst in carbon capture, utilization, and storage. Chem Soc Rev 2024; 53:9976-10011. [PMID: 39282873 DOI: 10.1039/d4cs00564c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Anthropogenic emissions of greenhouse gases (GHG; e.g., CO2) are regarded as the most critical cause of the current global climate crisis. To combat this issue, a plethora of CO2 capture, utilization, and storage (CCUS) technologies have been proposed and developed based on a number of technical principles (e.g., post-combustion capture, chemical looping, and catalytic conversion). In this light, the potential utility of dendritic fibrous nanosilica (DFNS) materials is recognized for specific CCUS applications (such as adsorptive capture of CO2 and its catalytic conversion into a list of value-added products (e.g., methane, carbon monoxide, and cyclic carbonates)) with the highly tunable properties (e.g., high surface area, pore volume, multifunctional surface, and open pore structure). This review has been organized to offer a comprehensive evaluation of the approaches required for tuning the textural/morphological/surface properties of DFNS (based on multiple synthesis and modification scenarios) toward CCUS applications. It further discusses the effects of such approaches on the properties of DFNS materials in relation to their CCUS performance. This review is thus expected to help develop and implement advanced strategies for DFNS-based CCUS technologies.
Collapse
Affiliation(s)
- Sam Yeol Lim
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea.
- School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
3
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
4
|
Podrojková N, Oriňak A, Garcia-Verdugo E, Sans V, Zanatta M. On the role of multifunctional ionic liquids for the oxidative carboxylation of olefins with carbon dioxide. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Deori N, Borah R, Lahkar S, Brahma S. Title: Cr(III) Incorporated Melamine‐Terephthalaldehyde Porous Organic Framework Nanosheet Catalyst for Carbon Dioxide Fixation Reaction. ChemistrySelect 2023. [DOI: 10.1002/slct.202204881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Naranarayan Deori
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Rakhimoni Borah
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Surabhi Lahkar
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Sanfaori Brahma
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
6
|
Castro-Ruiz A, Grefe L, Mejía E, Suman SG. Cobalt complexes with α-amino acid ligands catalyze the incorporation of CO 2 into cyclic carbonates. Dalton Trans 2023; 52:4186-4199. [PMID: 36892234 DOI: 10.1039/d2dt03595b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Arguably one of the largest research areas involving carbon dioxide (CO2) fixation is the coupling of CO2 to epoxides to form cyclic carbonates and polycarbonates. In this sense, there is an ever-increasing demand for the development of higher-performing catalytic systems that could counterbalance sustainability and energy efficiency in the production of cyclic carbonates. The use of abundant first-row transition metals combined with naturally occurring amino acids may be an ideal catalytic platform to fulfill this demand. Nevertheless, detailed information on the interactions between metal centers and natural products as catalysts in this transformation is lacking. Here a series of Co(III) amino acid catalysts operating in a binary system showed outstanding performance for the coupling reaction of epoxides and CO2. Nine new complexes of the type trans(N)-[Co(aa)2(bipy)]Cl (aa: ala, asp, lys, met, phe, pro, ser, tyr, and val) were used to explore the structure-activity relationship influenced by the complex outer coordination sphere, and its effect on the catalytic activity in the coupling reaction of CO2 and epoxides.
Collapse
Affiliation(s)
- Andrés Castro-Ruiz
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| | - Lea Grefe
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Esteban Mejía
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Sigridur G Suman
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| |
Collapse
|
7
|
El-Hendawy MM, Desoky IM, Mohamed MMA, Curran HJ. Pyridinium-Inspired Organocatalysts for Carbon Dioxide Fixation: A Density Functional Theory Inspection. J Phys Chem A 2023; 127:29-37. [PMID: 36595451 DOI: 10.1021/acs.jpca.2c05931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current project aims to apply the virtues of minimalism to examine the catalytic ability of commercially organic compounds of small chemical structures to catalyze the coupling reaction between carbon dioxide and propylene oxide (PO) under mild conditions. The proposed catalysts are pyridinium iodide (A), 2-hydroxypyridinium iodide (B), and piperidinium iodide (C), where their structure is based on cooperative acidic and nucleophilic motifs. The quantum chemistry model, M062X-D3/def2-TZVP//M062X-D3/def2-SVPP, was used to understand the reaction mechanism and the catalytic performance. Since the coupling reaction was performed under excess PO, we proposed that PO serves as a reactant and solvent. Therefore, calculations were performed in gas and liquid phases for comparison. The findings indicated that the rate-determining step depends on the chemical structure of the catalyst and whether the phase is a gas or liquid phase. In general, modeling in the liquid phase produces potential energy surfaces of lower energy barriers. The noncovalent interactions reflect the role of hydrogen bonding in controlling the kinetic behavior of the coupling reaction. Based on the finding, catalyst A is the best candidate for transforming CO2 into cyclic carbonates.
Collapse
Affiliation(s)
- Morad M El-Hendawy
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt.,Combustion Chemistry Centre, School of Chemistry, Ryan Institute, MaREI, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Ibtesam M Desoky
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt
| | - Mahmoud M A Mohamed
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt
| | - Henry J Curran
- Combustion Chemistry Centre, School of Chemistry, Ryan Institute, MaREI, National University of Ireland Galway, Galway H91 TK33, Ireland
| |
Collapse
|
8
|
Wong KT, Brigljević B, Lee JH, Yoon SY, Jang SB, Choong CE, Nah I, Kim H, Roh HS, Kwak SK, Lim H, Jang M. Highly Exposed NH 2 Edge on Fragmented g-C 3 N 4 Framework with Integrated Molybdenum Atoms for Catalytic CO 2 Cycloaddition: DFT and Techno-Economic Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204336. [PMID: 36403243 DOI: 10.1002/smll.202204336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
This study focuses on the applicability of single-atom Mo-doped graphitic carbon nitride (GCN) nanosheets which are specifically engineered with high surface area (exfoliated GCN), NH2 rich edges, and maximum utilization of isolated atomic Mo for propylene carbonate (PC) production through CO2 cycloaddition of propylene oxide (PO). Various operational parameters are optimized, for example, temperature (130 °C), pressure (20 bar), catalyst (Mo2 GCN), and catalyst mass (0.1 g). Under optimal conditions, 2% Mo-doped GCN (Mo2 GCN) has the highest catalytic performance, especially the turnover frequency (TOF) obtained, 36.4 h-1 is higher than most reported studies. DFT simulations prove the catalytic performance of Mo2 GCN significantly decreases the activation energy barrier for PO ring-opening from 50-60 to 4.903 kcal mol-1 . Coexistence of Lewis acid/base group improves the CO2 cycloaddition performance by the formation of coordination bond between electron-deficient Mo atom with O atom of PO, while NH2 surface group disrupts the stability of CO2 bond by donating electrons into its low-level empty orbital. Steady-state process simulation of the industrial-scale consumes 4.4 ton h-1 of CO2 with PC production of 10.2 ton h-1 . Techno-economic assessment profit from Mo2 GCN is estimated to be 60.39 million USD year-1 at a catalyst loss rate of 0.01 wt% h-1 .
Collapse
Affiliation(s)
- Kien Tiek Wong
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Boris Brigljević
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
- Carbon Value Co., Ltd, 2801 A-dong, 97, Centum Jungang-ro, Haeundae-gu, Busan, 48058, Republic of Korea
| | - Jeong Hyeon Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
| | - So Yeon Yoon
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seok Byum Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Inwook Nah
- Center for Energy Convergence, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyeongjun Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, Gangwon, 26493, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hankwon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| |
Collapse
|
9
|
Qu Z, Zhou M, Zhang J, Jiang H, Chen R. ZIF-derived Co@carbon nanofibers for enhanced chemical fixation of CO2. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Jiang D, He Y, Zhang J, Yin J, Ding J, Wang S, Li H. Conjugate acid-base bi-functional polymeric ionic liquids (CAB-PILs) as efficient catalysts for CO2 capture and subsequent glycidol cycloaddition reaction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Zhang SR, Fu Y, Lu H, Cao GP. Hydrotalcite-calcined derivatives doped by zinc: A nucleophile-modified multifunctional catalyst for synthesis of propylene carbonate by cycloaddition. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
12
|
Liu S, Hou X, Xu A, Chu B, Li Y, Jin L, Lu J, Dong L, Fan M. Restrictive Regulation of Ionic Liquid Quaternary Ammonium Salt in SBA‐15 Pore Channel for Efficient Carbon Dioxide Conversion. Chemistry 2022; 28:e202202105. [DOI: 10.1002/chem.202202105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shaoqing Liu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Xueyan Hou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing 210096 Jiangsu P. R. China
| | - Aihao Xu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Bingxian Chu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Yunxi Li
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Lijian Jin
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Jinkai Lu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Lihui Dong
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 P.R. China
| | - Minguang Fan
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
13
|
Afshari M, Varma RS, Saghanezhad SJ. Catalytic Applications of Heteropoly acid-Supported Nanomaterials in Synthetic Transformations and Environmental Remediation. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czech Republic
| | | |
Collapse
|
14
|
Peuronen A, Salojärvi E, Salonen P, Lehtonen A. Integration of catalyst and nucleophile in oxometal aminobis(phenolate) complexes with ammonium iodide pendant arm groups. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Siddig L, Alzard RH, Nguyen HL, Göb CR, Alnaqbi MA, Alzamly A. Hexagonal Layer Manganese Metal-Organic Framework for Photocatalytic CO 2 Cycloaddition Reaction. ACS OMEGA 2022; 7:9958-9963. [PMID: 35350318 PMCID: PMC8945067 DOI: 10.1021/acsomega.2c00663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 05/05/2023]
Abstract
A novel manganese metal-organic framework (Mn-MOF) termed UAEU-50 assembled from a benzenedicarboxylate linker (BDC) and trinuclear manganese clusters was synthesized and fully characterized using different spectroscopic and analytic techniques (e.g., X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy). UAEU-50 adopted a hexagonal layer structure and exhibited superior thermal stability and robust chemical stability. Photocatalytic activities of UAEU-50 were investigated using the cycloaddition of CO2 to different epoxides, forming cyclic carbonates. Impressively, UAEU-50 can transform up to 90% photocatalytic CO2 conversion to cyclic carbonates in the visible-light region at ambient conditions.
Collapse
Affiliation(s)
- Lamia
A. Siddig
- Department
of Chemistry, UAE University, P.O. Box 15551, Al-Ain 00000, UAE
| | - Reem H. Alzard
- Department
of Chemistry, UAE University, P.O. Box 15551, Al-Ain 00000, UAE
| | - Ha L. Nguyen
- Berkeley
Global Science Institute, University of
California, Berkeley, California 94720, United States
| | - Christian R. Göb
- Rigaku
Europe SE, Hugenottenallee 167, Neu-Isenburg 63263, Germany
| | - Mohamed A. Alnaqbi
- Department
of Chemistry, UAE University, P.O. Box 15551, Al-Ain 00000, UAE
| | - Ahmed Alzamly
- Department
of Chemistry, UAE University, P.O. Box 15551, Al-Ain 00000, UAE
| |
Collapse
|
16
|
Biagini P, Perego C, Po R, Boggioni L, Cozzolino M, Losio S, Flamigni A, Colombo A, Dragonetti C, Fagnani F, Matozzo P, Roberto D. Strategies for tuning the catalytic activity of zinc complexes in the solvent-free coupling reaction of CO2 and cyclohexene oxide. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Ma J, Wu Y, Yan X, Chen C, Wu T, Fan H, Liu Z, Han B. Efficient synthesis of cyclic carbonates from CO 2 under ambient conditions over Zn(betaine) 2Br 2: experimental and theoretical studies. Phys Chem Chem Phys 2022; 24:4298-4304. [PMID: 35107469 DOI: 10.1039/d1cp05553d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is very interesting to synthesize high value-added chemicals from CO2 under mild conditions with low energy consumption. Here, we report that a novel catalyst, Zn(betaine)2Br2, can efficiently promote the cycloaddition of CO2 with epoxides to synthesize cyclic carbonates under ambient conditions (30 °C, 1 atm). DFT calculations provide important insights into the mechanism, particularly the unusual synergistic catalytic action of Zn2+, Br- and NR4+, which is the critical factor for the outstanding performance of Zn(betaine)2Br2. The unique features of the catalyst are that it is cheap, green and very easy to prepare.
Collapse
Affiliation(s)
- Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
18
|
Santiago R, Moya C, Hernández E, Cojocaru AV, Navarro P, Palomar J. Extending the ability of cyclic carbonates for extracting BTEX to challenging low aromatic content naphtha: the designer solvent role at process scale. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Guglielmero L, Mero A, Mezzetta A, Tofani G, D'Andrea F, Pomelli C, Guazzelli L. Novel access to ionic liquids based on trivalent metal–EDTA complexes and their thermal and electrochemical characterization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
A catalytic approach of blending CO2-activating MOF struts for cycloaddition reaction in a helically interlaced Cu(II) amino acid imidazolate framework: DFT-corroborated investigation. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04507-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Abstract
As an emerging energy storage technology, Na-CO2 batteries with high energy density are drawing tremendous attention because of their advantages of combining cost-effective energy conversion and storage with CO2 clean recycle and utilization. Nevertheless, their commercial applications are impeded by unsatisfactory electrochemical performance including large overpotentials, poor rate capability, fast capacity deterioration, and inferior durability, which mainly results from the inefficient electrocatalysts of cathode materials. Therefore, novel structured cathode materials with efficient catalytic activity are highly desired. In this review, the latest advances of catalytic cathode materials for Na-CO2 batteries are summarized, with a special emphasis on the electrocatalysts for CO2 reduction and evolution, the formation and decomposition of discharge product, as well as their catalytic mechanism. Finally, an outlook is also proposed for the future development of Na-CO2 batteries.
Collapse
|
22
|
Hussein Ahmed S, Bakiro M, Alzamly A. Photocatalytic Activities of FeNbO 4/NH 2-MIL-125(Ti) Composites toward the Cycloaddition of CO 2 to Propylene Oxide. Molecules 2021; 26:1693. [PMID: 33803019 PMCID: PMC8002832 DOI: 10.3390/molecules26061693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Photocatalytic utilization of CO2 in the production of value-added chemicals has presented a recent green alternative for CO2 fixation. In this regard, three FeNbO4/NH2-MIL-125(Ti) composites of different mole ratios were synthesized, characterized using Powder X-ray diffraction (PXRD), UV-vis diffuse reflectance spectroscopy (UV-Vis DRS), Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX). PXRD patterns confirm the co-existence of the parent components in the prepared composites. Moreover, the surface area increased as the mole percent of NH2-MIL-125(Ti) in the composites increased due to the large surface area of NH2-MIL-125(Ti). Prepared composites were investigated for the photocatalytic insertion of CO2 into propylene oxide. FeNbO4(75%)/NH2-MIL-125(Ti)(25%) showed the highest percent yield of 52% compared to the other two composites. Results demonstrate the cooperative mechanism between FeNbO4 and NH2-MIL-125(Ti) and that the reaction proceeded photocatalytically.
Collapse
Affiliation(s)
| | | | - Ahmed Alzamly
- Department of Chemistry, UAE University, Al-Ain 15551, United Arab Emirates; (S.H.A.); (M.B.)
| |
Collapse
|