1
|
Buu TT, Ngoc BK, Quan VM, Hai ND, Nam NTH, Hieu NH. The removal enhancement of organic contaminations and optimization of the photocatalytic efficiency by Box-Behnken design using ZnO-TiO 2/porous graphene aerogel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81206-81225. [PMID: 37314558 DOI: 10.1007/s11356-023-28100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
In this study, zinc oxide-titanium dioxide/graphene aerogel (ZnO-TiO2/GA) was successfully synthesized through a simple and cost-effective hydrothermal self-assembly process. Besides, the surface response model and the experimental design according to the Box-Behnken model were selected to determine the optimal removal efficiency for crystal violet (CV) dye and para-nitrophenol (p-NP) phenolic compound. According to the obtained results, the highest degradation efficiency for CV dye of 99.6% was obtained under the following conditions: pH 6.7, CV concentration of 23.0 mg/L, and catalyst dose of 0.30 g/L. For p-NP, the degradation efficiency reached 99.1% under the following conditions: H2O2 volume of 1.25 mL, pH 6.8, and catalyst dose of 0.35 g/L. Therewithal, kinetic models of adsorption-photodegradation, thermodynamic adsorption, and free radical scavenging experiments were also investigated to propose the specific mechanisms involving the removal of CV dye and p-NP. According to the aforementioned results, the study provided a resulting ternary nanocomposite with great removal performance for water pollutants via the synergetic effects of adsorption and photodegradation processes.
Collapse
Affiliation(s)
- Ton That Buu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Bo Khanh Ngoc
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- University of Science (HCMUS-VNU), 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam
| | - Vo Minh Quan
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- University of Science (HCMUS-VNU), 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Duy Hai
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Hoai Nam
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Haruna A, Chong FK, Ho YC, Merican ZMA. Preparation and modification methods of defective titanium dioxide-based nanoparticles for photocatalytic wastewater treatment-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70706-70745. [PMID: 36044146 DOI: 10.1007/s11356-022-22749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The rapid population growth and industrial expansion worldwide have created serious water contamination concerns. To curb the pollution issue, it has become imperative to use a versatile material for the treatment. Titanium dioxide (TiO2) has been recognized as the most-studied nanoparticle in various fields of science and engineering due to its availability, low cost, efficiency, and other fascinating properties with a wide range of applications in modern technology. Recent studies revealed the photocatalytic activity of the material for the treatment of industrial effluents to promote environmental sustainability. With the wide band gap energy of 3.2 eV, TiO2 can be activated under UV light; thus, many strategies have been proposed to extend its photoabsorption to the visible light region. In what follows, this has generated increasing attention to study its characteristics and structural modifications in different forms for photocatalytic applications. The present review provides an insight into the understanding of the synthesis methods of TiO2, the current progress in the treatment techniques for the degradation of wide environmental pollutants employing modified TiO2 nanoparticles, and the factors affecting its photocatalytic activities. Further, recent developments in using titania for practical applications, the approach for designing novel nanomaterials, and the prospects and opportunities in this exciting area have been discussed.
Collapse
Affiliation(s)
- Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria.
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Fai-Kait Chong
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre for Urban Resource Sustainability, Institute for Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
3
|
Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review. Catalysts 2022. [DOI: 10.3390/catal12101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Modern society faces two major challenges: removing pollutants from water and producing energy from renewable sources. To do this, science proposes innovative, low-cost, and environmentally friendly methods. The heterogeneous photocatalysis process fits perfectly in this scenario. In fact, with photocatalysis, it is possible both to mineralize contaminants that are not easily biodegradable and to produce hydrogen from the water splitting reaction or from the conversion of organic substances present in water. However, the main challenge in the field of heterogeneous photocatalysis is to produce low-cost and efficient photocatalysts active under visible light or sunlight. The objective of this review is to compare the new proposals for the synthesis of innovative photocatalysts that reflect the requirements of green chemistry, applied both in the removal of organic contaminants and in hydrogen production. From this comparison, we want to bring out the strengths and weaknesses of the proposals in the literature, but above all, new ideas to improve the efficiency of heterogeneous photocatalysis guaranteeing the principles of environmental and economic sustainability.
Collapse
|
5
|
Huang R, Zhang M, Zheng Z, Wang K, Liu X, Chen Q, Luo D. Photocatalytic Degradation of Tobacco Tar Using CsPbBr3 Quantum Dots Modified Bi2WO6 Composite Photocatalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2422. [PMID: 34578738 PMCID: PMC8472219 DOI: 10.3390/nano11092422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in tobacco tar are regarded as a significant threat to human health. PAHs are formed due to the incomplete combustion of organics in tobacco and cigarette paper. Herein, for the first time, we extended the application of CsPbBr3 quantum dots (CsPbBr3) to the photocatalytic degradation of tobacco tar, which was collected from used cigarette filters. To optimize the photoactivity, CsPbBr3 was coupled with Bi2WO6 for the construction of a type-II photocatalyst. The photocatalytic performance of the CsPbBr3/Bi2WO6 composite was evaluated by the degradation rate of PAHs from tobacco tar under simulated solar irradiation. The results revealed that CsPbBr3/Bi2WO6 possesses a large specific surface area, outstanding absorption ability, good light absorption and rapid charge separation. As a result, in addition to good stability, the composite photocatalyst performed remarkably well in degrading PAHs (over 96% were removed in 50 mins of irradiation by AM 1.5 G). This study sheds light on promising novel applications of halide perovskite.
Collapse
Affiliation(s)
- Runda Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (R.H.); (Z.Z.); (Q.C.)
| | - Menglong Zhang
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (R.H.); (Z.Z.); (Q.C.)
| | - Kunqiang Wang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou 510006, China;
| | - Xiao Liu
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China
| | - Qizan Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (R.H.); (Z.Z.); (Q.C.)
| | - Dongxiang Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (R.H.); (Z.Z.); (Q.C.)
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou 510006, China;
| |
Collapse
|
6
|
Bartkowiak A, Korolevych O, Chiarello GL, Makowska-Janusik M, Zalas M. How Can the Introduction of Zr 4+ Ions into TiO 2 Nanomaterial Impact the DSSC Photoconversion Efficiency? A Comprehensive Theoretical and Experimental Consideration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2955. [PMID: 34070846 PMCID: PMC8198604 DOI: 10.3390/ma14112955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022]
Abstract
A series of pure and doped TiO2 nanomaterials with different Zr4+ ions content have been synthesized by the simple sol-gel method. Both types of materials (nanopowders and nanofilms scratched off of the working electrode's surface) have been characterized in detail by XRD, TEM, and Raman techniques. Inserting dopant ions into the TiO2 structure has resulted in inhibition of crystal growth and prevention of phase transformation. The role of Zr4+ ions in this process was explained by performing computer simulations. The three structures such as pure anatase, Zr-doped TiO2, and tetragonal ZrO2 have been investigated using density functional theory extended by Hubbard correction. The computational calculations correlate well with experimental results. Formation of defects and broadening of energy bandgap in defected Zr-doped materials have been confirmed. It turned out that the oxygen vacancies with substituting Zr4+ ions in TiO2 structure have a positive influence on the performance of dye-sensitized solar cells. The overall photoconversion efficiency enhancement up to 8.63% by introducing 3.7% Zr4+ ions into the TiO2 has been confirmed by I-V curves, EIS, and IPCE measurements. Such efficiency of DSSC utilizing the working electrode made by Zr4+ ions substituted into TiO2 material lattice has been for the first time reported.
Collapse
Affiliation(s)
- Aleksandra Bartkowiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy;
| | - Oleksandr Korolevych
- Faculty of Science and Technology, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (O.K.); (M.M.-J.)
| | - Gian Luca Chiarello
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy;
| | - Malgorzata Makowska-Janusik
- Faculty of Science and Technology, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (O.K.); (M.M.-J.)
| | - Maciej Zalas
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|