1
|
Curiel-Alegre S, Khan AHA, Rad C, Velasco-Arroyo B, Rumbo C, Rivilla R, Durán D, Redondo-Nieto M, Borràs E, Molognoni D, Martín-Castellote S, Juez B, Barros R. Bioaugmentation and vermicompost facilitated the hydrocarbon bioremediation: scaling up from lab to field for petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32916-8. [PMID: 38517632 DOI: 10.1007/s11356-024-32916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
The biodegradation of total petroleum hydrocarbon (TPH) in soil is very challenging due to the complex recalcitrant nature of hydrocarbon, hydrophobicity, indigenous microbial adaptation and competition, and harsh environmental conditions. This work further confirmed that limited natural attenuation of petroleum hydrocarbons (TPHs) (15% removal) necessitates efficient bioremediation strategies. Hence, a scaling-up experiment for testing and optimizing the use of biopiles for bioremediation of TPH polluted soils was conducted with three 500-kg pilots of polluted soil, and respective treatments were implemented: including control soil (CT), bioaugmentation and vermicompost treatment (BAVC), and a combined application of BAVC along with bioelectrochemical snorkels (BESBAVC), all maintained at 40% field capacity. This study identified that at pilot scale level, a successful application of BAVC treatment can achieve 90.3% TPH removal after 90 days. BAVC's effectiveness stemmed from synergistic mechanisms. Introduced microbial consortia were capable of TPH degradation, while vermicompost provided essential nutrients, enhanced aeration, and, potentially, acted as a biosorbent. Hence, it can be concluded that the combined application of BAVC significantly enhances TPH removal compared to natural attenuation. While the combined application of a bioelectrochemical snorkel (BES) with BAVC also showed a significant TPH removal, it did not differ statistically from the individual application of BAVC, under applied conditions. Further research is needed to optimize BES integration with BAVC for broader applicability. This study demonstrates BAVC as a scalable and mechanistically sound approach for TPH bioremediation in soil.
Collapse
Affiliation(s)
- Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Blanca Velasco-Arroyo
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Rafael Rivilla
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - David Durán
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Eduard Borràs
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | - Daniele Molognoni
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | | | - Blanca Juez
- ACCIONA, C/ Valportillo II, 8. 28108, Madrid, Alcobendas, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain.
| |
Collapse
|
2
|
Feng H, Yang W, Zhang Y, Ding Y, Chen L, Kang Y, Huang H, Chen R. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. BIORESOURCE TECHNOLOGY 2023; 377:128916. [PMID: 36940880 DOI: 10.1016/j.biortech.2023.128916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination has become increasingly prominent, therefore, the development of efficient remediation technology is crucial for improving groundwater quality. Bioremediation is cost-effective and environmentally friendly, while coexisting pollutant stress can affect microbial processes, and the heterogeneous character of groundwater medium can induce bioavailability limitations and electron donor/acceptor imbalances. Electroactive microorganisms (EAMs) are advantageous in contaminated groundwater because of their unique bidirectional electron transfer mechanism, which allows them to use solid electrodes as electron donors/acceptors. However, the relatively low-conductivity groundwater environment is unfavorable for electron transfer, which becomes a bottleneck problem that limits the remediation efficiency of EAMs. Therefore, this study reviews the recent advances and challenges of EAMs applied in the groundwater environment with complex coexisting ions, heterogeneity, and low conductivity and proposes corresponding future directions.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wanyue Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Huan Huang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
3
|
Viggi CC, Tucci M, Resitano M, Matturro B, Crognale S, Feigl V, Molnár M, Rossetti S, Aulenta F. Passive electrobioremediation approaches for enhancing hydrocarbons biodegradation in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157325. [PMID: 35839884 DOI: 10.1016/j.scitotenv.2022.157325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Electrobioremediation technologies hold considerable potential for the treatment of soils contaminated by petroleum hydrocarbons (PH), since they allow stimulating biodegradation processes with no need for subsurface chemicals injection and with little to no energy consumption. Here, a microbial electrochemical snorkel (MES) was applied for the treatment of a soil contaminated by hydrocarbons. The MES consists of direct coupling of a microbial anode with a cathode, being a single conductive, non-polarized material positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated soil) and the oxic zone (the overlying oxygenated water). Soil was also supplemented with electrically conductive particles of biochar as a strategy to construct a conductive network with microbes in the soil matrix, thus extending the radius of influence of the snorkel. The results of a comprehensive suite of chemical, microbiological and ecotoxicological analyses evidenced that biochar addition, rather than the presence of a snorkel, was the determining factor in accelerating PH removal from contaminated soils, possibly accelerating syntrophic and/or cooperative metabolisms involved in the degradation of PH. The enhancement of biodegradation was mirrored by an increased abundance of anaerobic and aerobic microorganisms known to be involved in the degradation of PH and related functional genes. Plant ecotoxicity assays confirmed a reduction of soils toxicity in treatments receiving electrically conductive biochar.
Collapse
Affiliation(s)
- Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy.
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Marco Resitano
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Simona Crognale
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Viktória Feigl
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| |
Collapse
|
4
|
Barbato M, Palma E, Marzocchi U, Cruz Viggi C, Rossetti S, Aulenta F, Scoma A. Snorkels enhance alkanes respiration at ambient and increased hydrostatic pressure (10 MPa) by either supporting the TCA cycle or limiting alternative routes for acetyl-CoA metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115244. [PMID: 35598451 DOI: 10.1016/j.jenvman.2022.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The impact of piezosensitive microorganisms is generally underestimated in the ecology of underwater environments exposed to increasing hydrostatic pressure (HP), including the biodegradation of crude oil components. Yet, no isolated pressure-loving (piezophile) microorganism grows optimally on hydrocarbons, and no isolated piezophile at all has a HP optimum <10 MPa (e.g. 1000 m below sea water level). Piezosensitive heterotrophs are thus largely accountable for oil clean up < 10 MPa, however, they are affected by such a mild HP increase in ways which are not completely clear. In a first study, the application of a bioelectrochemical system (called "oil-spill snorkel") enhanced the alkane oxidation capacity in sediments collected at surface water but tested up to 10 MPa. Here, the fingerprint left on transcript abundance was studied to explore which metabolic routes are 1) supported by snorkels application and 2) negatively impacted by HP increase. Transcript abundance was comparable for beta-oxidation across all treatments (also at a taxonomical level), while the metabolism of acetyl-CoA was highly impacted: at either 0.1 or 10 MPa, snorkels supported acetyl-CoA oxidation within the TCA cycle, while in negative controls using non-conductive rods several alternative routes for acetyl-CoA were stimulated (including those leading to internal carbon reserves e.g. 2,3 butanediol and dihydroxyacetone). In general, increased HP had opposite effects as compared to snorkels, thus indicating that snorkels could enhance hydrocarbons oxidation by alleviating in part the stressing effects imposed by increased HP on the anaerobic, respiratory electron transport chain. 16S rRNA gene analysis of sediments and biofilms on snorkels suggest a crosstalk between oil-degrading, sulfate-reducing microorganisms and sulfur oxidizers. In fact, no sulfur was deposited on snorkels, however, iron, aluminum and phosphorous were found to preferentially deposit on snorkels at 10 MPa. This data indicates that a passive BES such as the oil-spill snorkel can mitigate the stress imposed by increased HP on piezosensitive microorganisms (up to 10 MPa) without being subjected to passivation. An improved setup applying these principles can further support this deep-sea bioremediation strategy.
Collapse
Affiliation(s)
- Marta Barbato
- Engineered Microbial Systems (EMS) Lab, Industrial Biotechnology Section, Department of Biological and Chemical Engineering (BCE), Aarhus University, Aarhus, Denmark; Microbiology Section, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Enza Palma
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Ugo Marzocchi
- Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark; Center for Water Technology WATEC, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy.
| | - Alberto Scoma
- Engineered Microbial Systems (EMS) Lab, Industrial Biotechnology Section, Department of Biological and Chemical Engineering (BCE), Aarhus University, Aarhus, Denmark; Microbiology Section, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
From Surface Water to the Deep Sea: A Review on Factors Affecting the Biodegradation of Spilled Oil in Marine Environment. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the past century, the demand for petroleum products has increased rapidly, leading to higher oil extraction, processing and transportation, which result in numerous oil spills in coastal-marine environments. As the spilled oil can negatively affect the coastal-marine ecosystems, its transport and fates captured a significant interest of the scientific community and regulatory agencies. Typically, the environment has natural mechanisms (e.g., photooxidation, biodegradation, evaporation) to weather/degrade and remove the spilled oil from the environment. Among various oil weathering mechanisms, biodegradation by naturally occurring bacterial populations removes a majority of spilled oil, thus the focus on bioremediation has increased significantly. Helping in the marginal recognition of this promising technique for oil-spill degradation, this paper reviews recently published articles that will help broaden the understanding of the factors affecting biodegradation of spilled oil in coastal-marine environments. The goal of this review is to examine the effects of various environmental variables that contribute to oil degradation in the coastal-marine environments, as well as the factors that influence these processes. Physico-chemical parameters such as temperature, oxygen level, pressure, shoreline energy, salinity, and pH are taken into account. In general, increase in temperature, exposure to sunlight (photooxidation), dissolved oxygen (DO), nutrients (nitrogen, phosphorous and potassium), shoreline energy (physical advection—waves) and diverse hydrocarbon-degrading microorganisms consortium were found to increase spilled oil degradation in marine environments. In contrast, higher initial oil concentration and seawater pressure can lower oil degradation rates. There is limited information on the influences of seawater pH and salinity on oil degradation, thus warranting additional research. This comprehensive review can be used as a guide for bioremediation modeling and mitigating future oil spill pollution in the marine environment by utilizing the bacteria adapted to certain conditions.
Collapse
|
6
|
Dai S, Korth B, Schwab L, Aulenta F, Vogt C, Harnisch F. Deciphering the fate of sulfate in one- and two-chamber bioelectrochemical systems. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Simultaneous removal of hydrocarbons and sulfate from groundwater using a “bioelectric well”. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|