1
|
Tang J, Su C, Shao Z. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers. EXPLORATION (BEIJING, CHINA) 2024; 4:20220112. [PMID: 38854490 PMCID: PMC10867400 DOI: 10.1002/exp.20220112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 06/11/2024]
Abstract
Researchers have been seeking for the most technically-economical water electrolysis technology for entering the next-stage of industrial amplification for large-scale green hydrogen production. Various membrane-based electrolyzers have been developed to improve electric-efficiency, reduce the use of precious metals, enhance stability, and possibly realize direct seawater electrolysis. While electrode engineering is the key to approaching these goals by bridging the gap between catalysts design and electrolyzers development, nevertheless, as an emerging field, has not yet been systematically analyzed. Herein, this review is organized to comprehensively discuss the recent progresses of electrode engineering that have been made toward advanced membrane-based electrolyzers. For the commercialized or near-commercialized membrane electrolyzer technologies, the electrode material design principles are interpreted and the interface engineering that have been put forward to improve catalytic sites utilization and reduce precious metal loading is summarized. Given the pressing issues of electrolyzer cost reduction and efficiency improvement, the electrode structure engineering toward applying precious metal free electrocatalysts is highlighted and sufficient accessible sites within the thick catalyst layers with rational electrode architectures and effective ions/mass transport interfaces are enabled. In addition, this review also discusses the innovative ways as proposed to break the barriers of current membrane electrolyzers, including the adjustments of electrode reaction environment, and the feasible cell-voltage-breakdown strategies for durable direct seawater electrolysis. Hopefully, this review may provide insightful information of membrane-based electrode engineering and inspire the future development of advanced membrane electrolyzer technologies for cost-effective green hydrogen production.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| | - Chao Su
- School of Energy and PowerJiangsu University of Science and TechnologyZhenjiangChina
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
2
|
Shultz LR, Preradovic K, Ghimire S, Hadley HM, Xie S, Kashyap V, Beazley MJ, Crawford KE, Liu F, Mukhopadhyay K, Jurca T. Nickel foam supported porous copper oxide catalysts with noble metal-like activity for aqueous phase reactions. Catal Sci Technol 2022; 12:3804-3816. [PMID: 35965882 PMCID: PMC9373473 DOI: 10.1039/d1cy02313f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Contiguous metal foams offer a multitude of advantages over conventional powders as supports for nanostructured heterogeneous catalysts; most critically a preformed 3-D porous framework ensuring full directional coverage of supported catalyst, and intrinsic ease of handling and recyclability. Nonetheless, metal foams remain comparatively underused in thermal catalysis compared to more conventional supports such as amorphous carbon, metal oxides, zeolites and more recently MOFs. Herein, we demonstrate a facile preparation of highly-reactive, robust, and easy to handle Ni foam-supported Cu-based metal catalysts. The highly sustainable synthesis requires no specialized equipment, no surfactants or additive redox reagents, uses water as solvent, and CuCl2(H2O)2 as precursor. The resulting material seeds as well-separated micro-crystalline Cu2(OH)3Cl evenly covering the Ni foam. Calcination above 400 °C transforms the Cu2(OH)3Cl to highly porous CuO. All materials display promising activity towards the reduction of 4-nitrophenol and methyl orange. Notably, our leading CuO-based material displays 4-nitrophenol reduction activity comparable with very reactive precious-metal based systems. Recyclability studies highlight the intrinsic ease of handling for the Ni foam support, and our results point to a very robust, highly recyclable catalyst system.
Collapse
Affiliation(s)
- Lorianne R Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Konstantin Preradovic
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Suvash Ghimire
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Hayden M Hadley
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Varchaswal Kashyap
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Melanie J Beazley
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Kaitlyn E Crawford
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Biionix Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- Biionix Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| | - Kausik Mukhopadhyay
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, 32826, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| |
Collapse
|
3
|
Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst for Electro-Oxidation of Hydrazine. NANOMATERIALS 2021; 11:nano11112857. [PMID: 34835623 PMCID: PMC8619281 DOI: 10.3390/nano11112857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/18/2022]
Abstract
Structural engineering is an effective methodology for the tailoring of the quantities of active sites in nanostructured materials for fuel cell applications. In the present study, Co nanoparticles were incorporated into the network of 3D nitrogen-doped carbon tubes (Co@NCNTs) that were obtained via the molten-salt synthetic approach at 800 °C. Morphological representation reveals that the Co@NCNTs are encompassed with Co nanoparticles on the surface of the mesoporous walls of the carbon nanotubes, which offers a significant active surface area for electrochemical reactions. The CoNPs/NCNTs-1 (treated with CaCl2) nanomaterial was used as a potential candidate for the electro-oxidation of hydrazine, which improved the response of hydrazine (~8.5 mA) in 1.0 M NaOH, as compared with CoNPs/NCNTs-2 (treated without CaCl2), NCNTs, and the unmodified GCE. Furthermore, the integration of Co helps to improve the conductivity and promote the lower onset electro-oxidation potential (−0.58 V) toward the hydrazine electro-oxidation reaction. In particular, the CoNPs/NCNTs-1 catalysts showed significant catalytic activity and stability performances i.e., the i-t curves showed notable stability when compared with their initial current responses, even after 10 days, which indicates the significant durability of the catalyst materials. This work could present a new approach for the design of efficient electrode materials, which can be used as a favorable candidate for the electro-oxidation of liquid fuels in fuel cell applications.
Collapse
|