1
|
Chuakham S, Putkham AI, Chaiyachet Y, Saengprajak A, Banlue K, Tanpaiboonkul N, Putkham A. Scalable production of bio-calcium oxide via thermal decomposition of solid - hatchery waste in a laboratory-scale rotary kiln. Sci Rep 2025; 15:865. [PMID: 39757244 DOI: 10.1038/s41598-024-84889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025] Open
Abstract
Chicken eggshell waste is an alternative renewable source for quicklime production. Eggshell waste has received significant attention from researchers due to it being a potential source of bio-CaO, which not only drives the circular economy concept but also supports sustainable development. However, experiments on the production of bio-CaO are normally conducted in a small lab-scale furnace. Furthermore, the eggshell raw material is collected from canteens or households, which is not suitable for economical or industrial production. Therefore, this study investigated the factors affecting the bio-CaO production from hatchery waste via both batch and continuous calcination process in a laboratory-scale rotary kiln for the first time. The eggshells were first separated from the solid hatchery waste. Then, the effect of preparation methods of raw eggshells on the properties of bio-CaO was investigated, including eggshells with and without membrane separation, various particle sizes, and with an increase of the percent raw material filling in the kiln from 5 to 20%. Calcination of the samples was performed in a rotary kiln at 800 °C with a 0.5 RPM rotating speed and a 5° inclination of the kiln. The effects of the calcination process in either an air or N2 atmosphere on the calcined product were also observed. Instrumental analysis shows that the production yield and purity of bio-CaO were in the range of 49-56 wt% and 97-98%, respectively. The results also indicated that the production yield of bio-CaO decreased to 17.7% with a decrease in the raw material particle size from 3.3 mm to 250 μm. Moreover, the production of bio-CaO with eggshells containing eggshell membrane decreases the purity of calcium oxide by about 0.7-1.0%. In addition, further increasing the filling volume of the kiln from 5 to 20% had only a slight effect on the purity and yield of the product. These results imply that it is not necessary to remove the eggshell membrane from the raw eggshells in order to produce industrial-grade CaO from the raw eggshell. These new findings can likely be used to develop an alternative process design to reduce the manufacturing cost of bio-CaO produced from hatchery waste. Furthermore, this present study reveals that the specifications of the obtained bio-CaO comply with both Thai industrial standards and international food additive standards.
Collapse
Affiliation(s)
- Suwanan Chuakham
- Department of Environmental Technology, Faculty of Environment and Resource Studies, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Ajchara I Putkham
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Yuwadee Chaiyachet
- Department of Environmental Technology, Faculty of Environment and Resource Studies, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Arnusorn Saengprajak
- Department of Physics, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Kriangsak Banlue
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Nipon Tanpaiboonkul
- Department of Environmental Technology, Faculty of Environment and Resource Studies, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Apipong Putkham
- Department of Environmental Technology, Faculty of Environment and Resource Studies, Mahasarakham University, Mahasarakham, 44150, Thailand.
| |
Collapse
|
2
|
Iftikhar L, Ahmad I, Saleem M, Rasheed A, Waseem A. Exploring the chemistry of waste eggshells and its diverse applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:348-363. [PMID: 39236470 DOI: 10.1016/j.wasman.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
The large-scale production of chicken eggs results in a substantial amount of eggshell (ES) residue, often considered as waste. These discarded shells naturally decompose in soil approximately within a year. Eggshells (ES), comparatively contribute lesser towards environmental pollution, contain a remarkable amount of calcium, which can be converted into various valuable products that finds applications in industries, pharmaceuticals, and medicine. Among the diverse applications of ES, most effective and promising applications are removal of heavy metals (Cd, Cr, Pb, Zn, and Cu) ∼93-99 % metal adsorption capacity and capturing of flue gases (CO2 and SO2) from the environment. With ES having a maximum CO2 sorption capacity of 92 % as compared to other sources, and SO2 adsorption capacity of Calcined ES∼11.68 mg/g. The abundance, low cost and easy availability of CaO from ES makes them sustainable and eco-friendly. Additionally, its versatility extends beyond environmental prospects, as it is widely used in various industries as a catalyst, sorbent, fertilizer, and calcium supplement in food for individuals, plants and animals, among other diverse fields of study. Owing to its versatile applications, current review focuses on structure, chemical composition, treatment methods, and valorization pathways for diverse applications, aiming to reduce the eggshells waste and mitigate environmental pollution.
Collapse
Affiliation(s)
- Laiba Iftikhar
- Department of Chemistry Allama, Iqbal Open University, Islamabad 44000, Pakistan
| | - Iqbal Ahmad
- Department of Chemistry Allama, Iqbal Open University, Islamabad 44000, Pakistan
| | - Muhammad Saleem
- Department of Chemistry Allama, Iqbal Open University, Islamabad 44000, Pakistan.
| | - Aamir Rasheed
- Department of Chemistry, Faculty of Basic and Applied Sciences, University of Kotli, Kotli 11100, Azad Jammu and Kashmir, Pakistan
| | - Amir Waseem
- Analytical Lab, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
3
|
Makoś-Chełstowska P, Słupek E, Gębicki J. Agri-food waste biosorbents for volatile organic compounds removal from air and industrial gases - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173910. [PMID: 38880149 DOI: 10.1016/j.scitotenv.2024.173910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Approximately 1.3 billion metric tons of agricultural and food waste is produced annually, highlighting the need for appropriate processing and management strategies. This paper provides an exhaustive overview of the utilization of agri-food waste as a biosorbents for the elimination of volatile organic compounds (VOCs) from gaseous streams. The review paper underscores the critical role of waste management in the context of a circular economy, wherein waste is not viewed as a final product, but rather as a valuable resource for innovative processes. This perspective is consistent with the principles of resource efficiency and sustainability. Various types of waste have been described as effective biosorbents, and methods for biosorbents preparation have been discussed, including thermal treatment, surface activation, and doping with nitrogen, phosphorus, and sulfur atoms. This review further investigates the applications of these biosorbents in adsorbing VOCs from gaseous streams and elucidates the primary mechanisms governing the adsorption process. Additionally, this study sheds light on methods of biosorbents regeneration, which is a key aspect of practical applications. The paper concludes with a critical commentary and discussion of future perspectives in this field, emphasizing the need for more research and innovation in waste management to fully realize the potential of a circular economy. This review serves as a valuable resource for researchers and practitioners interested in the potential use of agri-food waste biosorbents for VOCs removal, marking a significant first step toward considering these aspects together.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland.
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
4
|
Kareem Z, Eyiler E. Synthesis of hydroxyapatite from eggshells via wet chemical precipitation: a review. RSC Adv 2024; 14:21439-21452. [PMID: 38979446 PMCID: PMC11228757 DOI: 10.1039/d4ra02198c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024] Open
Abstract
In conjunction with the global trend towards sustainable industry, this review provides a summary of the research endeavors and efforts made in the field of exploiting eggshells in the production of hydroxyapatite (HA). HA is one of the most used biomaterials and has attracted considerable attention over the years towards biomedical applications. As the traditional production of HA from calcium and phosphorus chemical precursors synthetically has bottlenecks of being expensive, complex, time consuming, and results in a low biocompatible product, natural resources have become an attractive alternative option to synthesize HA, with trace elements providing a higher performance. Eggshell, with a growing production annually, is potentially a promising natural resource for HA production. Many studies have used different wet chemical precipitation routes to produce HA with properties comparable to synthetic HA. Thus, this review provides an overview of the various routes that can be used to synthesize HA from eggshells. In this review, the synthesis of HA from eggshells via wet chemical precipitation methods is specifically discussed in term of synthesis parameters and properties of the synthesized HA. This review should aid in choosing the most suitable route for HA production with the optimum parameters for obtaining the desired properties to meet the requirements of biomedical applications such as tissue engineering.
Collapse
Affiliation(s)
- Zaid Kareem
- Prosthetics and Orthotics Engineering Department, University of Kerbala Iraq
- Advanced Materials and Nanotechnology Department, Cukurova University Adana Turkey
| | - Ersan Eyiler
- Advanced Materials and Nanotechnology Department, Cukurova University Adana Turkey
- Department of Chemical Engineering, Cukurova University Adana Turkey
- Tissue Engineering Department, Cukurova University Adana Turkey
| |
Collapse
|
5
|
Kugarajah V, Solomon J, Rajendran K, Dharmalingam S. Enhancement of nitrate removal and electricity generation in microbial fuel cell using eggshell supported biocathode. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Cheremisina OV, Ponomareva MA, Bolotov VA, Osipov AS, Sitko AV. Thermodynamic Characteristics of the Hydrogen Sulfide Sorption Process by Ferromanganese Materials. ACS OMEGA 2022; 7:3007-3015. [PMID: 35097293 PMCID: PMC8793082 DOI: 10.1021/acsomega.1c06037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The work analyzes hydrogen sulfide sorption from model gas mixtures containing H2S from 1.25 × 10-3 to 1.28 × 10-4 mol/L under static conditions at temperatures 253 and 298 K on the raw manganese ore of the Ulu-Telyak deposit (Bashkortostan, Russia), manganese(IV) oxide, and manganese(IV) and iron(III) oxide mixtures. The thermodynamic models for calculating the equilibrium constants and Gibbs energy changes were analyzed. The sorption isotherms were described by the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. The value of enthalpy of hydrogen sorption on the ore was -68.98 ± 3.45 kJ/mol and those on model mixtures Mn4 + Fe2O3 and MnO4 were ±12.20 kJ/mol and -103.826 ± 5.19 kJ/mol, respectively, and the entropies of the hydrogen sulfide sorption process on three manganese materials at 253 K were calculated. The limiting capacity values of manganese materials at 253 and 298 K were obtained. The morphological analysis of the ore samples, Mn4 + Fe2O3, and MnO4, before and after hydrogen sulfide sorption, was carried out at 253 K. The obtained thermodynamic parameters determine the advantage of using the raw manganese ore over pure oxides, which characterizes its effective practical application in the desulfurization process.
Collapse
|
7
|
Jaradat AQ, Telfah DB, Ismail R. Heavy metals removal from landfill leachate by coagulation/flocculation process combined with continuous adsorption using eggshell waste materials. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3817-3832. [PMID: 34928846 DOI: 10.2166/wst.2021.493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of agricultural waste materials to remove heavy metals from wastewater is attractive due to its simplicity and economic efficiency. In this study, the applicability of calcined eggshell waste materials (CES) for heavy metals removal from real wastewater were examined via transport column experiment preceded by coagulation/flocculation process.A column packed with granular activated carbon (GAC) is operated in parallel to CES column to evaluate the adsorptive attributes of CES. The findings are assessed from another set of column experiments consisting of sand followed by CES column to evaluate the effect of particulate matter (PM) on CES performance toward heavy metals removal. In coagulation experiment, alum addition at an optimum dose (3.0 g/L) reduced the total suspended solids (TSS) by 80%, whereas the Fe, Pb, Zn, Cu, Ni, and Cr were reduced by 80%, 77%, 76%, 73%, 56%, and 49%, respectively. Under the current applied hydrodynamic conditions, using sand column before CES column improved the removal efficiencies of Fe, Pb, Cu, Zn, Ni, and Cr from 50% to 92%, 55% to 93%, 60% to 87%, 53% to 76%, 45% to 65%, and 41% to 60%, respectively. The whole results illustrate that CES can be competitive to GAC for heavy metals removal from landfill leachate, mainly if applied after PM removal by sand filtration.
Collapse
Affiliation(s)
- A Q Jaradat
- Department of Civil Engineering, Yarmouk University, Irbid, Jordan E-mail:
| | - Dua'a B Telfah
- Department of Civil Engineering, Yarmouk University, Irbid, Jordan E-mail:
| | - Rabah Ismail
- Department of Civil Engineering, Jadara University, Irbid, Jordan
| |
Collapse
|
8
|
Abstract
Hydrogen sulfide is one of the main waste products of the petrochemical industry; it is produced by the catalytic hydrodesulfurization processes (HDS) of the hydrocarbon feedstocks, and it is a byproduct from the sweetening of sour natural gas and from the upgrading of heavy oils, bitumen, and coals [...]
Collapse
|
9
|
Abstract
The hydrogen sulfide (H2S) is one of the main byproducts in natural gas plants, refineries, heavy oil upgraders, and metallurgical processes [...]
Collapse
|
10
|
Wang X, Ji G, Zhang Y, Guo Y, Zhao J. Research on High- and Low-Temperature Characteristics of Bitumen Blended with Waste Eggshell Powder. MATERIALS 2021; 14:ma14082020. [PMID: 33920557 PMCID: PMC8073276 DOI: 10.3390/ma14082020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
The sustainability of resources is presently a major global concern. Sustainable construction materials can be produced by applying biological waste to engineering. Eggshells, as biological waste, are usually dumped in landfills or discarded. This causes many environmental problems including malodor, noise pollution, and serious waste of resources. To solve these problems, this study combined eggshell waste with bitumen materials for bio-roads construction. This paper investigated the impact of biological waste eggshell powder on the high- and low-temperature characteristics of bitumen materials. Scanning electron microscopy (SEM) revealed the microstructure of eggshell powder. The interaction between eggshell powder and asphalt was analyzed using Fourier transform infrared spectroscopy (FT-IR). The high- and low-temperature characteristics were investigated using conventional performance tests, and dynamic shear rheometer (DSR) and bending beam rheometer (BBR) experiments. These results indicate that eggshell powder (1) has a rough and porous microstructure; (2) has no apparent chemical reaction with asphalt; and (3) improves the consistency, hardness, and high-temperature characteristics. However, it reduces the plastic deformation capacity of asphalt, and the low-temperature crack resistance of asphalt cannot be improved. The research demonstrated that the application of eggshell powder in asphalt is feasible and has long-term resource and environmental advantages.
Collapse
|