1
|
Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Wangchuk S, Kanatharana P, Thavarungkul P, Limbut W. Nano-palladium-decorated bismuth sulfide microspheres on a disposable electrode integrated with smartphone-based electrochemical detection of nitrite in food samples. Food Chem 2024; 447:138987. [PMID: 38518621 DOI: 10.1016/j.foodchem.2024.138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Nitrite (NO2-) is widely used as an additive to extend the shelf life of food products. Excessive nitrite intake not only causes blood-related diseases but also has the potential risk of causing cancers. A disposable screen-printed electrode was modified with nano‑palladium decorated bismuth sulfide microspheres (nanoPd@Bi2S3MS/SPE), and integrated with a smartphone-interfaced potentiostat to develop a portable, electrochemical nitrite sensor. NanoPd@Bi2S3MS was prepared by the hydrothermal reduction of a Bi2S3MS and Pd2+ dispersion and drop cast on the SPE. The nanoPd@Bi2S3MS/SPE was coupled with a smartphone-controlled portable potentiostat and applied to determine nitrite in food samples. The linear range of the sensor was 0.01-500 μM and the limit of detection was 0.0033 μM. The proposed system showed good repeatability, reproducibility, catalytic stability, and immunity to interferences. The proposed electrode material and a smartphone-based small potentiostat created a simple, portable, fast electrochemical sensing system that accurately measured nitrite in food samples.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Asamee Soleh
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Kritsada Samoson
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Lee KT, Lee DS, Chen WH, Lin YL, Luo D, Park YK, Bandala A. An overview of commercialization and marketization of thermoelectric generators for low-temperature waste heat recovery. iScience 2023; 26:107874. [PMID: 37860755 PMCID: PMC10583114 DOI: 10.1016/j.isci.2023.107874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
According to statistics, low-temperature waste heat below 300°C accounts for more than 89% of industrial waste heat. If the waste heat is not recycled, a large amount of low-temperature waste heat will be released into the atmosphere, thereby exacerbating global warming and posing a significant threat to human survival. Although the power generation efficiency of solid-state thermoelectric generation technology is lower than the organic Rankine cycle, it only requires a smaller construction area, which increases its market acceptance, applicability, and penetration. Especially in the pursuit of net-zero emissions by global companies, the importance of low-temperature waste heat recovery and power generation is even more prominent. The current thermoelectric conversion efficiency of commercial thermoelectric chips is about 5%. Power generation cost, thermoelectric conversion efficiency, and energy use efficiency are highly correlated with the commercialization of solid-state thermoelectric technology. This research shares five practical waste heat power generation cases commercialized by recycling three heat sources. It also points out the three significant challenges facing the commercialization of power generation from low-temperature waste heat recovery. This study analyzes 2,365 TEG patents submitted by 28 companies worldwide to determine the basic technology for realizing waste heat recovery through TEG and explore the potential commercialization of related waste heat recovery products. The future challenge for the large-scale commercialization of solid-state thermoelectric technology is not technological development but financial incentives related to changes in international energy prices and subsidies that promote zero carbon emissions.
Collapse
Affiliation(s)
- Kuan-Ting Lee
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Da-Sheng Lee
- Department of Energy and Refrigerating Air-conditioning Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Yu-Li Lin
- ApexGreen Technology Co., Ltd., Tainan 745, Taiwan
| | - Ding Luo
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Argel Bandala
- Department of Electronics and Communications Engineering, De La Salle University, Manila 0922, The Philippines
| |
Collapse
|
5
|
Veerakumar P, Jaysiva G, Chen SM, Lin KC. Development of Palladium on Bismuth Sulfide Nanorods as a Bifunctional Nanomaterial for Efficient Electrochemical Detection and Photoreduction of Hg(II) Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5908-5920. [PMID: 35042336 DOI: 10.1021/acsami.1c16723] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ganesamurthi Jaysiva
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Nkwe VM, Onwudiwe DC, Azeez MA. Solvothermal synthesis of pure and Sn-doped Bi 2S 3 and the evaluation of their photocatalytic activity on the degradation of methylene blue. BMC Chem 2021; 15:65. [PMID: 34922612 PMCID: PMC8684666 DOI: 10.1186/s13065-021-00792-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A large volume of dye molecules finds its way into the environment, accumulates in water bodies, and makes the aquatic system unsafe to human health. Due to the complex nature of these dye materials, most of the conventional techniques are not effective for their removal. Semiconductor photocatalysis has emerged as a promising technique for the destruction of organic pollutants under UV or visible light irradiation. Among the semiconductors, Bi2S3 is widely employed in photocatalysis due to its non-toxicity and chemical stability. However, one of its problems is the high recombination rate of the charge, and various methods have been employed to enhance the photo-reactivity. One of these methods is the incorporation of transition elements. RESULTS Herein, a facile solvothermal method was used to prepare Bi2S3 nanorods and needle- shaped Sn doped Bi2S3, using bismuth(III) tris(N-phenyldithiocarbamate) as a single-source precursor. The prepared nanomaterials were characterized, and used as efficient photocatalyst for the photo enhanced degradation of methylene blue (MB) dye under visible light irradiation. The nanomaterials exhibited very good photocatalytic activity towards the photo degradation of MB, showing a degradation rate of up to 83% and 94% within 150 min for the pristine and Sn doped Bi2S3, respectively. CONCLUSION The enhancement in the photocatalytic activity of the Sn doped Bi2S3 was attributed to the suppression in the recombination rate of the electron-hole pairs, due to the formation of new energy level below the CB, that was capable of altering the equilibrium concentration of the carrier. This confirmed that Sn doped Bi2S3 could be utilized as valuable cost-efficient catalysts for eliminating methyl blue from aqueous solutions and also possible candidates in environmental pollution treatment.
Collapse
Affiliation(s)
- Violet M Nkwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
| | - Damian C Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa.
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Mayowa A Azeez
- Department of Industrial Chemistry, Ekiti State University, P.M.B 5363, Ado Ekiti, Ekiti State, Nigeria
| |
Collapse
|